Papers
Topics
Authors
Recent
2000 character limit reached

A multiscale method for inhomogeneous elastic problems with high contrast coefficients

Published 20 Oct 2022 in math.NA, cs.NA, and math.AP | (2210.11297v1)

Abstract: In this paper, we develop the constrained energy minimizing generalized multiscale finite element method (CEM-GMsFEM) with mixed boundary conditions (Dirichlet and Neumann) for the elasticity equations in high contrast media. By a special treatment of mixed boundary conditions separately, and combining the construction of the relaxed and constraint version of the CEM-GMsFEM, we discover that the method offers some advantages such as the independence of the target region's contrast from precision, while the sizes of oversampling domains have a significant impact on numerical accuracy. Moreover, to our best knowledge, this is the first proof of the convergence of the CEM-GMsFEM with mixed boundary conditions for the elasticity equations given. Some numerical experiments are provided to demonstrate the method's performance.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.