Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Constraint energy minimizing generalized multiscale finite element method for nonlinear poroelasticity and elasticity (1909.13267v1)

Published 29 Sep 2019 in math.NA, cs.NA, and math.AP

Abstract: In this paper, we apply the constraint energy minimizing generalized multiscale finite element method (CEM-GMsFEM) to first solving a nonlinear poroelasticity problem. The arising system consists of a nonlinear pressure equation and a nonlinear stress equation in strain-limiting setting, where strains keep bounded while stresses can grow arbitrarily large. After time discretization of the system, to tackle the nonlinearity, we linearize the resulting equations by Picard iteration. To handle the linearized equations, we employ the CEM-GMsFEM and obtain appropriate offline multiscale basis functions for the pressure and the displacement. More specifically, first, auxiliary multiscale basis functions are generated by solving local spectral problems, via the GMsFEM. Then, multiscale spaces are constructed in oversampled regions, by solving a constraint energy minimizing (CEM) problem. After that, this strategy (with the CEM-GMsFEM) is also applied to a static case of the above nonlinear poroelasticity problem, that is, elasticity problem, where the residual based online multiscale basis functions are generated by an adaptive enrichment procedure, to further reduce the error. Convergence of the two cases is demonstrated by several numerical simulations, which give accurate solutions, with converging coarse-mesh sizes as well as few basis functions (degrees of freedom) and oversampling layers.

Citations (97)

Summary

We haven't generated a summary for this paper yet.