Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pseudo-Label Noise Suppression Techniques for Semi-Supervised Semantic Segmentation (2210.10426v1)

Published 19 Oct 2022 in cs.CV

Abstract: Semi-supervised learning (SSL) can reduce the need for large labelled datasets by incorporating unlabelled data into the training. This is particularly interesting for semantic segmentation, where labelling data is very costly and time-consuming. Current SSL approaches use an initially supervised trained model to generate predictions for unlabelled images, called pseudo-labels, which are subsequently used for training a new model from scratch. Since the predictions usually do not come from an error-free neural network, they are naturally full of errors. However, training with partially incorrect labels often reduce the final model performance. Thus, it is crucial to manage errors/noise of pseudo-labels wisely. In this work, we use three mechanisms to control pseudo-label noise and errors: (1) We construct a solid base framework by mixing images with cow-patterns on unlabelled images to reduce the negative impact of wrong pseudo-labels. Nevertheless, wrong pseudo-labels still have a negative impact on the performance. Therefore, (2) we propose a simple and effective loss weighting scheme for pseudo-labels defined by the feedback of the model trained on these pseudo-labels. This allows us to soft-weight the pseudo-label training examples based on their determined confidence score during training. (3) We also study the common practice to ignore pseudo-labels with low confidence and empirically analyse the influence and effect of pseudo-labels with different confidence ranges on SSL and the contribution of pseudo-label filtering to the achievable performance gains. We show that our method performs superior to state of-the-art alternatives on various datasets. Furthermore, we show that our findings also transfer to other tasks such as human pose estimation. Our code is available at https://github.com/ChristmasFan/SSL_Denoising_Segmentation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Sebastian Scherer (163 papers)
  2. Robin Schön (14 papers)
  3. Rainer Lienhart (36 papers)
Citations (1)