Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Acoustic-aware Non-autoregressive Spell Correction with Mask Sample Decoding (2210.08665v1)

Published 16 Oct 2022 in eess.AS and cs.SD

Abstract: Masked LLM (MLM) has been widely used for understanding tasks, e.g. BERT. Recently, MLM has also been used for generation tasks. The most popular one in speech is using Mask-CTC for non-autoregressive speech recognition. In this paper, we take one step further, and explore the possibility of using MLM as a non-autoregressive spell correction (SC) model for transformer-transducer (TT), denoted as MLM-SC. Our initial experiments show that MLM-SC provides no improvements on Librispeech data. The problem might be the choice of modeling units (word pieces) and the inaccuracy of the TT confidence scores for English data. To solve the problem, we propose a mask sample decoding (MS-decode) method where the masked tokens can have the choice of being masked or not to compensate for the inaccuracy. As a result, we reduce the WER of a streaming TT from 7.6% to 6.5% on the Librispeech test-other data and the CER from 7.3% to 6.1% on the Aishell test data, respectively.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Ruchao Fan (23 papers)
  2. Guoli Ye (15 papers)
  3. Yashesh Gaur (43 papers)
  4. Jinyu Li (164 papers)
Citations (4)