Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Client Error Clustering Approaches in Content Delivery Networks (CDN) (2210.05314v1)

Published 11 Oct 2022 in cs.NI and cs.AI

Abstract: Content delivery networks (CDNs) are the backbone of the Internet and are key in delivering high quality video on demand (VoD), web content and file services to billions of users. CDNs usually consist of hierarchically organized content servers positioned as close to the customers as possible. CDN operators face a significant challenge when analyzing billions of web server and proxy logs generated by their systems. The main objective of this study was to analyze the applicability of various clustering methods in CDN error log analysis. We worked with real-life CDN proxy logs, identified key features included in the logs (e.g., content type, HTTP status code, time-of-day, host) and clustered the log lines corresponding to different host types offering live TV, video on demand, file caching and web content. Our experiments were run on a dataset consisting of proxy logs collected over a 7-day period from a single, physical CDN server running multiple types of services (VoD, live TV, file). The dataset consisted of 2.2 billion log lines. Our analysis showed that CDN error clustering is a viable approach towards identifying recurring errors and improving overall quality of service.

Citations (1)

Summary

We haven't generated a summary for this paper yet.