Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
52 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Fourier Neural Solver for large sparse linear algebraic systems (2210.03881v1)

Published 8 Oct 2022 in math.NA and cs.NA

Abstract: Large sparse linear algebraic systems can be found in a variety of scientific and engineering fields, and many scientists strive to solve them in an efficient and robust manner. In this paper, we propose an interpretable neural solver, the Fourier Neural Solver (FNS), to address them. FNS is based on deep learning and Fast Fourier transform. Because the error between the iterative solution and the ground truth involves a wide range of frequency modes, FNS combines a stationary iterative method and frequency space correction to eliminate different components of the error. Local Fourier analysis reveals that the FNS can pick up on the error components in frequency space that are challenging to eliminate with stationary methods. Numerical experiments on the anisotropy diffusion equation, convection-diffusion equation, and Helmholtz equation show that FNS is more efficient and more robust than the state-of-the-art neural solver.

Citations (9)

Summary

We haven't generated a summary for this paper yet.