Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
52 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

NSNO: Neumann Series Neural Operator for Solving Helmholtz Equations in Inhomogeneous Medium (2401.13494v1)

Published 24 Jan 2024 in math.NA and cs.NA

Abstract: In this paper, we propose Neumann Series Neural Operator (NSNO) to learn the solution operator of Helmholtz equation from inhomogeneity coefficients and source terms to solutions. Helmholtz equation is a crucial partial differential equation (PDE) with applications in various scientific and engineering fields. However, efficient solver of Helmholtz equation is still a big challenge especially in the case of high wavenumber. Recently, deep learning has shown great potential in solving PDEs especially in learning solution operators. Inspired by Neumann series in Helmholtz equation, we design a novel network architecture in which U-Net is embedded inside to capture the multiscale feature. Extensive experiments show that the proposed NSNO significantly outperforms the state-of-the-art FNO with at least 60\% lower relative $L2$-error, especially in the large wavenumber case, and has 50\% lower computational cost and less data requirement. Moreover, NSNO can be used as the surrogate model in inverse scattering problems. Numerical tests show that NSNO is able to give comparable results with traditional finite difference forward solver while the computational cost is reduced tremendously.

Citations (2)

Summary

We haven't generated a summary for this paper yet.