Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Model Reference Gaussian Process Regression: Data-Driven Output Feedback Controller (2210.02494v1)

Published 5 Oct 2022 in eess.SY and cs.SY

Abstract: Data-driven controls using Gaussian process regression have recently gained much attention. In such approaches, system identification by Gaussian process regression is mostly followed by model-based controller designs. However, the outcomes of Gaussian process regression are often too complicated to apply conventional control designs, which makes the numerical design such as model predictive control employed in many cases. To overcome the restriction, our idea is to perform Gaussian process regression to the inverse of the plant with the same input/output data for the conventional regression. With the inverse, one can design a model reference controller without resorting to numerical control methods. This paper considers single-input single-output (SISO) discrete-time nonlinear systems of minimum phase with relative degree one. It is highlighted that the model reference Gaussian process regression controller is designed directly from pre-collected input/output data without system identification.

Citations (2)

Summary

We haven't generated a summary for this paper yet.