Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maximum likelihood estimation of distribution grid topology and parameters from smart meter data (2210.02217v1)

Published 5 Oct 2022 in eess.SY, cs.SY, and stat.AP

Abstract: This paper defines a Maximum Likelihood Estimator (MLE) for the admittance matrix estimation of distribution grids, utilising voltage magnitude and power measurements collected only from common, unsychronised measuring devices (Smart Meters). First, we present a model of the grid, as well as the existing MLE based on voltage and current phasor measurements. Then, this problem formulation is adjusted for phase-less measurements using common assumptions. The effect of these assumptions is compared to the initial problem in various scenarios. Finally, numerical experiments on a popular IEEE benchmark network indicate promising results. Missing data can greatly disrupt estimation methods. Not measuring the voltage phase only adds 30\% of error to the admittance matrix estimate in realistic conditions. Moreover, the sensitivity to measurement noise is similar with and without the phase.

Citations (2)

Summary

We haven't generated a summary for this paper yet.