Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unbounded Gradients in Federated Learning with Buffered Asynchronous Aggregation (2210.01161v1)

Published 3 Oct 2022 in cs.LG, cs.AI, cs.DC, math.OC, and stat.ML

Abstract: Synchronous updates may compromise the efficiency of cross-device federated learning once the number of active clients increases. The \textit{FedBuff} algorithm (Nguyen et al., 2022) alleviates this problem by allowing asynchronous updates (staleness), which enhances the scalability of training while preserving privacy via secure aggregation. We revisit the \textit{FedBuff} algorithm for asynchronous federated learning and extend the existing analysis by removing the boundedness assumptions from the gradient norm. This paper presents a theoretical analysis of the convergence rate of this algorithm when heterogeneity in data, batch size, and delay are considered.

Citations (13)

Summary

We haven't generated a summary for this paper yet.