Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An optimal open-loop strategy for handling a flexible beam with a robot manipulator (2210.00578v1)

Published 2 Oct 2022 in cs.RO and math.OC

Abstract: Fast and safe manipulation of flexible objects with a robot manipulator necessitates measures to cope with vibrations. Existing approaches either increase the task execution time or require complex models and/or additional instrumentation to measure vibrations. This paper develops a model-based method that overcomes these limitations. It relies on a simple pendulum-like model for modeling the beam, open-loop optimal control for suppressing vibrations, and does not require any exteroceptive sensors. We experimentally show that the proposed method drastically reduces residual vibrations -- at least 90% -- and outperforms the commonly used input shaping (IS) for the same execution time. Besides, our method can also execute the task faster than IS with a minor reduction in vibration suppression performance. The proposed method facilitates the development of new solutions to a wide range of tasks that involve dynamic manipulation of flexible objects.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. M. Saadat and P. Nan, “Industrial applications of automatic manipulation of flexible materials,” Industrial Robot, vol. 29, no. 5, pp. 434–442, 2002.
  2. C. N. Kapsalas, J. S. Sakellariou, P. N. Koustoumpardis, and N. A. Aspragathos, “An ARX-based method for the vibration control of flexible beams manipulated by industrial robots,” Robotics and Computer-Integrated Manufacturing, vol. 52, pp. 76–91, 2018.
  3. L. Liu, D. Wang, Y. Li, and R. Jiang, “Adaptive control of a rigid manipulator holding a flexible payload driven by an unknown force,” 2009 IEEE International Conference on Mechatronics and Automation, ICMA 2009, pp. 649–654, 2009.
  4. N. C. Singer and W. P. Seering, “Preshaping Command Inputs to Reduce System Vibration,” Journal of Dynamic Systems, Measurement, and Control, vol. 112, no. 1, pp. 76–82, mar 1990.
  5. Y. Sakawa, F. Matsuno, and S. Fukushima, “Modeling and feedback control of a flexible arm,” Journal of Robotic Systems, vol. 2, no. 4, pp. 453–472, 1985.
  6. T. Zhou, A. A. Goldenberg, and J. W. Zu, “Modal force based input shaper for vibration suppression of flexible payloads,” Proceedings - IEEE International Conference on Robotics and Automation, vol. 3, no. May, pp. 2430–2435, 2002.
  7. S. Hoshyari, H. Xu, E. Knoop, S. Coros, and M. Bächer, “Vibration-minimizing motion retargeting for robotic characters,” ACM Transactions on Graphics, vol. 38, no. 4, 2019.
  8. T. A. Myhre, A. A. Transeth, T. K. Lien, and O. Egeland, “Online state estimation of flexible beams based on particle filtering and camera images,” International Conference on Advanced Mechatronic Systems, ICAMechS, pp. 133–138, 2014.
  9. Y. Zhao, W. Chen, T. Tang, and M. Tomizuka, “Zero time delay input shaping for smooth settling of industrial robots,” IEEE International Conference on Automation Science and Engineering, vol. 2016-Novem, no. 1, pp. 620–625, 2016.
  10. W. Aribowo, T. Yamashita, and K. Terashima, “Integrated trajectory planning and sloshing suppression for three-dimensional motion of liquid container transfer robot arm,” Journal of Robotics, vol. 2015, 2015.
  11. J. Reinhold, M. Amersdorfer, and T. Meurer, “A Dynamic Optimization Approach for Sloshing Free Transport of Liquid Filled Containers using an Industrial Robot,” IEEE International Conference on Intelligent Robots and Systems, pp. 2336–2341, 2019.
  12. C. M. Pappalardo and D. Guida, “Use of the adjoint method for controlling the mechanical vibrations of nonlinear systems,” Machines, vol. 6, no. 2, 2018.
  13. L. Rupert, P. Hyatt, and M. D. Killpack, “Comparing Model Predictive Control and input shaping for improved response of low-impedance robots,” IEEE-RAS International Conference on Humanoid Robots, vol. 2015-Decem, pp. 256–263, 2015.
  14. M. Katliar, F. M. Drop, H. Teufell, M. Diehl, and H. H. Bülthoff, “Real-Time Nonlinear Model Predictive Control of a Motion Simulator Based on a 8-DOF Serial Robot,” 2018 European Control Conference, ECC 2018, pp. 1529–1535, 2018.
  15. P. Boscariol, A. Gasparetto, and V. Zanotto, “Model predictive control of a flexible links mechanism,” Journal of Intelligent and Robotic Systems: Theory and Applications, vol. 58, no. 2, pp. 125–147, 2010.
  16. L. N. Virgin, S. T. Santillan, and D. B. Holland, “Effect of gravity on the vibration of vertical cantilevers,” Mechanics Research Communications, vol. 34, no. 3, pp. 312–317, 2007.
  17. L. Meirovitch and R. Parker, “Fundamentals of vibrations,” Appl. Mech. Rev., vol. 54, no. 6, pp. B100–B101, 2001.
  18. S. S. Ge, T. H. Lee, and G. Zhu, “New lumping method of a flexible manipulator,” Proceedings of the American Control Conference, vol. 3, pp. 1412–1416, 1997.
  19. J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, “CasADi – A software framework for nonlinear optimization and optimal control,” Mathematical Programming Computation, vol. 11, no. 1, pp. 1–36, 2019.
  20. A. Wächter and L. T. Biegler, “On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming,” Mathematical programming, vol. 106, no. 1, pp. 25–57, 2006.
  21. D. C. Liu and J. Nocedal, “On the limited memory BFGS method for large scale optimization,” Mathematical Programming, vol. 45, no. 1-3, pp. 503–528, aug 1989.
  22. HSL, “A collection of Fortran codes for large scale scientific computation.” [Online]. Available: http://www.hsl.rl.ac.uk.
  23. A. Astudillo, J. Gillis, G. Pipeleers, W. Decre, and J. Swevers, “Speed-Up of Nonlinear Model Predictive Control for Robot Manipulators Using Task and Data Parallelism,” in 2022 IEEE 17th International Conference on Advanced Motion Control (AMC).   IEEE, feb 2022, pp. 201–206.
  24. J. Carpentier and N. Mansard, “Analytical derivatives of rigid body dynamics algorithms,” in Robotics: Science and systems (RSS 2018), 2018.
  25. J. Carpentier, G. Saurel, G. Buondonno, J. Mirabel, F. Lamiraux, O. Stasse, and N. Mansard, “The pinocchio c++ library – a fast and flexible implementation of rigid body dynamics algorithms and their analytical derivatives,” in IEEE International Symposium on System Integrations (SII), 2019.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com