Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Contact-Implicit Model Predictive Control for Dexterous In-hand Manipulation: A Long-Horizon and Robust Approach (2402.18897v3)

Published 29 Feb 2024 in cs.RO

Abstract: Dexterous in-hand manipulation is an essential skill of production and life. However, the highly stiff and mutable nature of contacts limits real-time contact detection and inference, degrading the performance of model-based methods. Inspired by recent advances in contact-rich locomotion and manipulation, this paper proposes a novel model-based approach to control dexterous in-hand manipulation and overcome the current limitations. The proposed approach has an attractive feature, which allows the robot to robustly perform long-horizon in-hand manipulation without predefined contact sequences or separate planning procedures. Specifically, we design a high-level contact-implicit model predictive controller to generate real-time contact plans executed by the low-level tracking controller. Compared to other model-based methods, such a long-horizon feature enables replanning and robust execution of contact-rich motions to achieve large displacements in-hand manipulation more efficiently; Compared to existing learning-based methods, the proposed approach achieves dexterity and also generalizes to different objects without any pre-training. Detailed simulations and ablation studies demonstrate the efficiency and effectiveness of our method. It runs at 20Hz on the 23-degree-of-freedom, long-horizon, in-hand object rotation task.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. A. Billard and D. Kragic, “Trends and challenges in robot manipulation,” Science, vol. 364, 2019.
  2. T. Pang, H. J. T. Suh, L. Yang, and R. Tedrake, “Global planning for contact-rich manipulation via local smoothing of quasi-dynamic contact models,” IEEE Transactions on Robotics, vol. 39, pp. 4691–4711, 2022.
  3. G. Kim, D.-K. Kang, J. ha Kim, S. Hong, and H.-W. Park, “Contact-implicit mpc: Controlling diverse quadruped motions without pre-planned contact modes or trajectories,” ArXiv, vol. abs/2312.08961, 2023.
  4. W. Jin and M. Posa, “Task-driven hybrid model reduction for dexterous manipulation,” IEEE Transactions on Robotics, pp. 1–20, 2024.
  5. M. Andrychowicz, B. Baker, M. Chociej, R. Józefowicz, B. McGrew, J. W. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray, J. Schneider, S. Sidor, J. Tobin, P. Welinder, L. Weng, and W. Zaremba, “Learning dexterous in-hand manipulation,” The International Journal of Robotics Research, vol. 39, pp. 20 – 3, 2018.
  6. T. Chen, M. Tippur, S. Wu, V. Kumar, E. H. Adelson, and P. Agrawal, “Visual dexterity: In-hand reorientation of novel and complex object shapes,” Science Robotics, vol. 8, 2022.
  7. H. Bui and M. Posa, “Enhancing task performance of learned simplified models via reinforcement learning,” ArXiv, vol. abs/2310.09714, 2023.
  8. J. Xu, V. Makoviychuk, Y. Narang, F. Ramos, W. Matusik, A. Garg, and M. Macklin, “Accelerated policy learning with parallel differentiable simulation,” in International Conference on Learning Representations, 2021.
  9. F. Khadivar and A. Billard, “Adaptive fingers coordination for robust grasp and in-hand manipulation under disturbances and unknown dynamics,” IEEE Transactions on Robotics, vol. 39, pp. 3350–3367, 2023.
  10. C. Chen, P. Culbertson, M. Lepert, M. Schwager, and J. Bohg, “Trajectotree: Trajectory optimization meets tree search for planning multi-contact dexterous manipulation,” 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 8262–8268, 2021.
  11. X. Cheng, S. Patil, Z. Temel, O. Kroemer, and M. T. Mason, “Enhancing dexterity in robotic manipulation via hierarchical contact exploration,” IEEE Robotics and Automation Letters, vol. 9, pp. 390–397, 2023.
  12. H. Zhu and L. Righetti, “Efficient object manipulation planning with monte carlo tree search,” 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 10 628–10 635, 2022.
  13. S. Cruciani, C. Smith, D. Kragic, and K. Hang, “Dexterous manipulation graphs,” 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2040–2047, 2018.
  14. V. Kurtz, A. Castro, A. Ö. Önol, and H. Lin, “Inverse dynamics trajectory optimization for contact-implicit model predictive control,” ArXiv, vol. abs/2309.01813, 2023.
  15. S. Cruciani, B. Sundaralingam, K. Hang, V. Kumar, T. Hermans, and D. Kragic, “Benchmarking in-hand manipulation,” IEEE Robotics and Automation Letters, vol. 5, pp. 588–595, 2020.
  16. A. I. Weinberg, A. Shirizly, O. Azulay, and A. Sintov, “Survey of learning approaches for robotic in-hand manipulation,” ArXiv, vol. abs/2401.07915, 2024.
  17. Y. Qin, H. Su, and X. Wang, “From one hand to multiple hands: Imitation learning for dexterous manipulation from single-camera teleoperation,” IEEE Robotics and Automation Letters, vol. 7, pp. 10 873–10 881, 2022.
  18. V. Kumar, E. Todorov, and S. Levine, “Optimal control with learned local models: Application to dexterous manipulation,” 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 378–383, 2016.
  19. N. C. Dafle, R. Holladay, and A. Rodriguez, “In-hand manipulation via motion cones,” ArXiv, vol. abs/1810.00219, 2018.
  20. S. L. Cleac’h, T. A. Howell, S. Yang, C.-Y. Lee, J. Zhang, A. L. Bishop, M. Schwager, and Z. Manchester, “Fast contact-implicit model predictive control,” IEEE Transactions on Robotics, 2021.
  21. A. Ö. Önol, P. Long, and T. Padır, “Contact-implicit trajectory optimization based on a variable smooth contact model and successive convexification,” 2019 International Conference on Robotics and Automation (ICRA), pp. 2447–2453, 2018.
  22. T. A. Howell, N. Gileadi, S. Tunyasuvunakool, K. Zakka, T. Erez, and Y. Tassa, “Predictive sampling: Real-time behaviour synthesis with mujoco,” ArXiv, vol. abs/2212.00541, 2022.
  23. A. Aydinoglu, A. Wei, and M. Posa, “Consensus complementarity control for multi-contact mpc,” ArXiv, vol. abs/2304.11259, 2023.
  24. M. T. Mason, “Mechanics of robotic manipulation,” 2001.
  25. Y. Jiang, Y. Jia, and X. Li, “Contact-aware non-prehensile manipulation for object retrieval in cluttered environments,” 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 10 604–10 611, 2023.
  26. Q. L. Lidec, W. Jallet, L.-R. Montaut, I. Laptev, C. Schmid, and J. Carpentier, “Contact models in robotics: a comparative analysis,” ArXiv, vol. abs/2304.06372, 2023.
  27. J. Carpentier, G. Saurel, G. Buondonno, J. Mirabel, F. Lamiraux, O. Stasse, and N. Mansard, “The pinocchio c++ library – a fast and flexible implementation of rigid body dynamics algorithms and their analytical derivatives,” in IEEE International Symposium on System Integrations (SII), 2019.
  28. Y. Tassa, N. Mansard, and E. Todorov, “Control-limited differential dynamic programming,” 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 1168–1175, 2014.
  29. T. Gold, A. Völz, and K. Graichen, “Model predictive interaction control for robotic manipulation tasks,” IEEE Transactions on Robotics, vol. 39, pp. 76–89, 2023.
  30. T. Pang, “A convex quasistatic time-stepping scheme for rigid multibody systems with contact and friction,” 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 6614–6620, 2021.
  31. C. Mastalli, R. Budhiraja, W. Merkt, G. Saurel, B. Hammoud, M. Naveau, J. Carpentier, L. Righetti, S. Vijayakumar, and N. Mansard, “Crocoddyl: An efficient and versatile framework for multi-contact optimal control,” in IEEE International Conference on Robotics and Automation (ICRA), 2020.
  32. R. Tedrake and the Drake Development Team, “Drake: Model-based design and verification for robotics,” 2019. [Online]. Available: https://drake.mit.edu
  33. M. Lambeta, P. wei Chou, S. Tian, B. Yang, B. Maloon, V. R. Most, D. Stroud, R. Santos, A. Byagowi, G. Kammerer, D. Jayaraman, and R. Calandra, “Digit: A novel design for a low-cost compact high-resolution tactile sensor with application to in-hand manipulation,” IEEE Robotics and Automation Letters, vol. 5, pp. 3838–3845, 2020.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Yongpeng Jiang (9 papers)
  2. Mingrui Yu (12 papers)
  3. Xinghao Zhu (26 papers)
  4. Masayoshi Tomizuka (261 papers)
  5. Xiang Li (1003 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.