Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Multiple Criteria Decision Analysis based Approach to Remove Uncertainty in SMP Models (2209.15260v1)

Published 30 Sep 2022 in cs.SE and cs.AI

Abstract: Advanced AI technologies are serving humankind in a number of ways, from healthcare to manufacturing. Advanced automated machines are quite expensive, but the end output is supposed to be of the highest possible quality. Depending on the agility of requirements, these automation technologies can change dramatically. The likelihood of making changes to automation software is extremely high, so it must be updated regularly. If maintainability is not taken into account, it will have an impact on the entire system and increase maintenance costs. Many companies use different programming paradigms in developing advanced automated machines based on client requirements. Therefore, it is essential to estimate the maintainability of heterogeneous software. As a result of the lack of widespread consensus on software maintainability prediction (SPM) methodologies, individuals and businesses are left perplexed when it comes to determining the appropriate model for estimating the maintainability of software, which serves as the inspiration for this research. A structured methodology was designed, and the datasets were preprocessed and maintainability index (MI) range was also found for all the datasets expect for UIMS and QUES, the metric CHANGE is used for UIMS and QUES. To remove the uncertainty among the aforementioned techniques, a popular multiple criteria decision-making model, namely the technique for order preference by similarity to ideal solution (TOPSIS), is used in this work. TOPSIS revealed that GARF outperforms the other considered techniques in predicting the maintainability of heterogeneous automated software.

Citations (8)

Summary

We haven't generated a summary for this paper yet.