Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Systematic Literature Review of Soft Computing Techniques for Software Maintainability Prediction: State-of-the-Art, Challenges and Future Directions (2209.10131v1)

Published 21 Sep 2022 in cs.SE and cs.AI

Abstract: The software is changing rapidly with the invention of advanced technologies and methodologies. The ability to rapidly and successfully upgrade software in response to changing business requirements is more vital than ever. For the long-term management of software products, measuring software maintainability is crucial. The use of soft computing techniques for software maintainability prediction has shown immense promise in software maintenance process by providing accurate prediction of software maintainability. To better understand the role of soft computing techniques for software maintainability prediction, we aim to provide a systematic literature review of soft computing techniques for software maintainability prediction. Firstly, we provide a detailed overview of software maintainability. Following this, we explore the fundamentals of software maintainability and the reasons for adopting soft computing methodologies for predicting software maintainability. Later, we examine the soft computing approaches employed in the process of software maintainability prediction. Furthermore, we discuss the difficulties and potential solutions associated with the use of soft computing techniques to predict software maintainability. Finally, we conclude the review with some promising future directions to drive further research innovations and developments in this promising area.

Citations (3)

Summary

We haven't generated a summary for this paper yet.