An exceptional set estimate for restricted projections to lines in $\mathbb{R}^3$ (2209.15152v2)
Abstract: Let $\gamma:[0,1]\rightarrow \mathbb{S}{2}$ be a non-degenerate curve in $\mathbb{R}3$, that is to say, $\det\big(\gamma(\theta),\gamma'(\theta),\gamma''(\theta)\big)\neq 0$. For each $\theta\in[0,1]$, let $l_\theta={t\gamma(\theta):t\in\mathbb{R}}$ and $\rho_\theta:\mathbb{R}3\rightarrow l_\theta$ be the orthogonal projections. We prove an exceptional set estimate. For any Borel set $A\subset\mathbb{R}3$ and $0\le s\le 1$, define $E_s(A):={\theta\in[0,1]: \text{dim}(\rho_\theta(A))<s}$. We have $\text{dim}(E_s(A))\le 1+\frac{s-\text{dim}(A)}{2}$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.