Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Meta Knowledge Condensation for Federated Learning (2209.14851v1)

Published 29 Sep 2022 in cs.LG and cs.CV

Abstract: Existing federated learning paradigms usually extensively exchange distributed models at a central solver to achieve a more powerful model. However, this would incur severe communication burden between a server and multiple clients especially when data distributions are heterogeneous. As a result, current federated learning methods often require a large number of communication rounds in training. Unlike existing paradigms, we introduce an alternative perspective to significantly decrease the communication cost in federate learning. In this work, we first introduce a meta knowledge representation method that extracts meta knowledge from distributed clients. The extracted meta knowledge encodes essential information that can be used to improve the current model. As the training progresses, the contributions of training samples to a federated model also vary. Thus, we introduce a dynamic weight assignment mechanism that enables samples to contribute adaptively to the current model update. Then, informative meta knowledge from all active clients is sent to the server for model update. Training a model on the combined meta knowledge without exposing original data among different clients can significantly mitigate the heterogeneity issues. Moreover, to further ameliorate data heterogeneity, we also exchange meta knowledge among clients as conditional initialization for local meta knowledge extraction. Extensive experiments demonstrate the effectiveness and efficiency of our proposed method. Remarkably, our method outperforms the state-of-the-art by a large margin (from $74.07\%$ to $92.95\%$) on MNIST with a restricted communication budget (i.e. 10 rounds).

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ping Liu (93 papers)
  2. Xin Yu (192 papers)
  3. Joey Tianyi Zhou (116 papers)
Citations (25)

Summary

We haven't generated a summary for this paper yet.