Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 15 tok/s
GPT-5 High 16 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 188 tok/s Pro
2000 character limit reached

Complexity-Theoretic Limitations on Quantum Algorithms for Topological Data Analysis (2209.14286v2)

Published 28 Sep 2022 in quant-ph

Abstract: Quantum algorithms for topological data analysis (TDA) seem to provide an exponential advantage over the best classical approach while remaining immune to dequantization procedures and the data-loading problem. In this paper, we give complexity-theoretic evidence that the central task of TDA -- estimating Betti numbers -- is intractable even for quantum computers. Specifically, we prove that the problem of computing Betti numbers exactly is #P-hard, while the problem of approximating Betti numbers up to multiplicative error is NP-hard. Moreover, both problems retain their hardness if restricted to the regime where quantum algorithms for TDA perform best. Because quantum computers are not expected to solve #P-hard or NP-hard problems in subexponential time, our results imply that quantum algorithms for TDA offer only a polynomial advantage in the worst case. We support our claim by showing that the seminal quantum algorithm for TDA developed by Lloyd, Garnerone and Zanardi achieves a quadratic speedup over the best known classical approach in asymptotically almost all cases. Finally, we argue that an exponential quantum advantage can be recovered if the input data is given as a specification of simplices rather than as a list of vertices and edges.

Citations (18)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.