Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Mean-field limit of Non-exchangeable interacting diffusions with singular kernels (2209.14002v2)

Published 28 Sep 2022 in math.PR and math.AP

Abstract: The mean-field limit of interacting diffusions without exchangeability, caused by weighted interactions and non-i.i.d. initial values, are investigated. The weights could be signed and unbounded. The result applies to a large class of singular kernels including the Biot-Savart law. We demonstrate a flexible type of mean-field convergence, in contrast to the typical convergence of $\frac{1}{N}\sum_{i=1}N\delta_{X_i}$. More specifically, the sequence of signed empirical measure processes with arbitrary uniform $lr$-weights, $r>1$, weakly converges to a coupled PDE's, such as the dynamics describing the passive scalar advected by the 2D Navier-Stokes equation. Our method is based on a tightness/compactness argument and makes use of the systems' uniform Fisher information. The main difficulty is to determine how to propagate the regularity properties of the limits of empirical measures in the absence of the DeFinetti-Hewitt-Savage theorem for the non-exchangeable case. To this end, a sequence of random measures, which merges weakly with a sequence of weighted empirical measures and has uniform Sobolev regularity, is constructed through the disintegration of the joint laws of particles.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.