Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uniform Exact Reconstruction of Sparse Signals and Low-rank Matrices from Phase-Only Measurements (2209.12824v3)

Published 26 Sep 2022 in cs.IT and math.IT

Abstract: In phase-only compressive sensing (PO-CS), our goal is to recover low-complexity signals (e.g., sparse signals, low-rank matrices) from the phase of complex linear measurements. While perfect recovery of signal direction in PO-CS was observed quite early, the exact reconstruction guarantee for a fixed, real signal was recently done by Jacques and Feuillen [IEEE Trans. Inf. Theory, 67 (2021), pp. 4150-4161]. However, two questions remain open: the uniform recovery guarantee and exact recovery of complex signal. In this paper, we almost completely address these two open questions. We prove that, all complex sparse signals or low-rank matrices can be uniformly, exactly recovered from a near optimal number of complex Gaussian measurement phases. By recasting PO-CS as a linear compressive sensing problem, the exact recovery follows from restricted isometry property (RIP). Our approach to uniform recovery guarantee is based on covering arguments that involve a delicate control of the (original linear) measurements with overly small magnitude. To work with complex signal, a different sign-product embedding property and a careful rescaling of the sensing matrix are employed. In addition, we show an extension that the uniform recovery is stable under moderate bounded noise. We also propose to add Gaussian dither before capturing the phases to achieve full reconstruction with norm information. Experimental results are reported to corroborate and demonstrate our theoretical results.

Citations (5)

Summary

We haven't generated a summary for this paper yet.