Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
132 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Removal of Ocular Artifacts in EEG Using Deep Learning (2209.11980v1)

Published 24 Sep 2022 in eess.SP, cs.AI, and cs.LG

Abstract: EEG signals are complex and low-frequency signals. Therefore, they are easily influenced by external factors. EEG artifact removal is crucial in neuroscience because artifacts have a significant impact on the results of EEG analysis. The removal of ocular artifacts is the most challenging among these artifacts. In this study, a novel ocular artifact removal method is presented by developing bidirectional long-short term memory (BiLSTM)-based deep learning (DL) models. We created a benchmarking dataset to train and test proposed DL models by combining the EEGdenoiseNet and DEAP datasets. We also augmented the data by contaminating ground-truth clean EEG signals with EOG at various SNR levels. The BiLSTM network is then fed to features extracted from augmented signals using highly-localized time-frequency (TF) coefficients obtained by wavelet synchrosqueezed transform (WSST). We also compare the WSST-based DL model results with traditional TF analysis (TFA) methods namely short-time Fourier transformation (STFT) and continuous wavelet transform (CWT) as well as augmented raw signals. The best average MSE value of 0.3066 was obtained by the first time-proposed BiLSTM-based WSST-Net model. Our results demonstrated the WSST-Net model significantly improves artifact removal performance compared to traditional TF and raw signal methods. Also, the proposed EOG removal approach reveals that it outperforms many conventional and DL-based ocular artifact removal methods in the literature.

Citations (5)

Summary

We haven't generated a summary for this paper yet.