Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Understanding Open-Set Recognition by Jacobian Norm and Inter-Class Separation (2209.11436v2)

Published 23 Sep 2022 in cs.CV

Abstract: The findings on open-set recognition (OSR) show that models trained on classification datasets are capable of detecting unknown classes not encountered during the training process. Specifically, after training, the learned representations of known classes dissociate from the representations of the unknown class, facilitating OSR. In this paper, we investigate this emergent phenomenon by examining the relationship between the Jacobian norm of representations and the inter/intra-class learning dynamics. We provide a theoretical analysis, demonstrating that intra-class learning reduces the Jacobian norm for known class samples, while inter-class learning increases the Jacobian norm for unknown samples, even in the absence of direct exposure to any unknown sample. Overall, the discrepancy in the Jacobian norm between the known and unknown classes enables OSR. Based on this insight, which highlights the pivotal role of inter-class learning, we devise a marginal one-vs-rest (m-OvR) loss function that promotes strong inter-class separation. To further improve OSR performance, we integrate the m-OvR loss with additional strategies that maximize the Jacobian norm disparity. We present comprehensive experimental results that support our theoretical observations and demonstrate the efficacy of our proposed OSR approach.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (1)
Citations (3)

Summary

We haven't generated a summary for this paper yet.