Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

OpenSlot: Mixed Open-set Recognition with Object-centric Learning (2407.02386v1)

Published 2 Jul 2024 in cs.CV

Abstract: Existing open-set recognition (OSR) studies typically assume that each image contains only one class label, and the unknown test set (negative) has a disjoint label space from the known test set (positive), a scenario termed full-label shift. This paper introduces the mixed OSR problem, where test images contain multiple class semantics, with known and unknown classes co-occurring in negatives, leading to a more challenging super-label shift. Addressing the mixed OSR requires classification models to accurately distinguish different class semantics within images and measure their "knowness". In this study, we propose the OpenSlot framework, built upon object-centric learning. OpenSlot utilizes slot features to represent diverse class semantics and produce class predictions. Through our proposed anti-noise-slot (ANS) technique, we mitigate the impact of noise (invalid and background) slots during classification training, effectively addressing the semantic misalignment between class predictions and the ground truth. We conduct extensive experiments with OpenSlot on mixed & conventional OSR benchmarks. Without elaborate designs, OpenSlot not only exceeds existing OSR studies in detecting super-label shifts across single & multi-label mixed OSR tasks but also achieves state-of-the-art performance on conventional benchmarks. Remarkably, our method can localize class objects without using bounding boxes during training. The competitive performance in open-set object detection demonstrates OpenSlot's ability to explicitly explain label shifts and benefits in computational efficiency and generalization.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and A. Joulin, “Emerging properties in self-supervised vision transformers,” in IEEE Conf. Comput. Vis. Patt. Recog., Seattle, USA, 2021, pp. 9650–9660.
  2. G. Chen, P. Peng, X. Wang, and Y. Tian, “Adversarial reciprocal points learning for open set recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 11, pp. 8065–8081, 2021.
  3. Y. Cui, Z. Yu, W. Peng, Q. Tian, and L. Liu, “Rethinking few-shot class-incremental learning with open-set hypothesis in hyperbolic geometry,” IEEE Trans. on Multimedia, pp. 1–14, 2023.
  4. S. Deng, J.-G. Yu, Z. Wu, H. Gao, Y. Li, and Y. Yang, “Learning relative feature displacement for few-shot open-set recognition,” IEEE Trans. on Multimedia, vol. 25, pp. 5763–5774, 2023.
  5. A. Dittadi, S. Papa, M. De Vita, B. Schölkopf, O. Winther, and F. Locatello, “Generalization and robustness implications in object-centric learning,” 2021. [Online]. Available: https://arxiv.org/abs/2107.00637
  6. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al., “An image is worth 16x16 words: Transformers for image recognition at scale,” 2020. [Online]. Available: https://arxiv.org/abs/2010.11929
  7. X. Du, G. Gozum, Y. Ming, and Y. Li, “Siren: Shaping representations for detecting out-of-distribution objects,” Adv. Neural Inform. Process. Syst., vol. 35, pp. 20 434–20 449, 2022.
  8. X. Du, Z. Wang, M. Cai, and Y. Li, “Vos: Learning what you don’t know by virtual outlier synthesis,” 2022. [Online]. Available: https://arxiv.org/abs/2202.01197
  9. M. Everingham and J. Winn, “The pascal visual object classes challenge 2012 (voc2012) development kit,” Patt. Anal., Statist. Modelling and Computat. Learning, Tech. Rep, vol. 8, 2011.
  10. C. Geng, S.-j. Huang, and S. Chen, “Recent advances in open set recognition: A survey,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 10, pp. 3614–3631, 2020.
  11. X. Guo, J. Liu, T. Liu, and Y. Yuan, “Simt: Handling open-set noise for domain adaptive semantic segmentation,” in IEEE Conf. Comput. Vis. Patt. Recog., New Orleans, USA, 2022, pp. 7032–7041.
  12. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in IEEE Conf. Comput. Vis. Patt. Recog., Las Vegas, USA, 2016, pp. 770–778.
  13. D. Hendrycks and K. Gimpel, “A baseline for detecting misclassified and out-of-distribution examples in neural networks,” 2016. [Online]. Available: https://arxiv.org/abs/1610.02136
  14. C. Huang, Q. Xu, Y. Wang, Y. Wang, and Y. Zhang, “Mood 2020: A public benchmark for out-of-distribution detection and localization on medical images,” IEEE Trans. on Med. Imag., vol. 41, no. 10, pp. 2728–2738, 2022.
  15. C. Huang and Q. e. a. Xu, “Self-supervised masking for unsupervised anomaly detection and localization,” IEEE Trans. on Multimedia, vol. 25, pp. 4426–4438, 2023.
  16. H. Huang, Y. Wang, Q. Hu, and M.-M. Cheng, “Class-specific semantic reconstruction for open set recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 4, pp. 4214–4228, 2022.
  17. J. Jiang, F. Deng, G. Singh, and S. Ahn, “Object-centric slot diffusion,” 2023. [Online]. Available: https://arxiv.org/abs/2303.10834
  18. J. Kim, J. Choi, H.-J. Choi, and S. J. Kim, “Shepherding slots to objects: Towards stable and robust object-centric learning,” in IEEE Conf. Comput. Vis. Patt. Recog., Vancouver, Canada, 2023, pp. 19 198–19 207.
  19. S. Kong and D. Ramanan, “Opengan: Open-set recognition via open data generation,” in Int. Conf. Comput. Vis., Virtual/Online, 2021, pp. 813–822.
  20. A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features from tiny images,” 2009.
  21. A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings, I. Krasin, J. Pont-Tuset, S. Kamali, S. Popov, M. Malloci, A. Kolesnikov et al., “The open images dataset v4: Unified image classification, object detection, and visual relationship detection at scale,” Int. J. Comput. Vis., vol. 128, no. 7, pp. 1956–1981, 2020.
  22. Y. Le and X. Yang, “Tiny imagenet visual recognition challenge,” CS 231N, vol. 7, no. 7, p. 3, 2015.
  23. K. Lee, K. Lee, H. Lee, and J. Shin, “A simple unified framework for detecting out-of-distribution samples and adversarial attacks,” Adv. Neural Inform. Process. Syst., vol. 31, 2018.
  24. S. Liang, Y. Li, and R. Srikant, “Enhancing the reliability of out-of-distribution image detection in neural networks,” 2017. [Online]. Available: https://arxiv.org/abs/1706.02690
  25. T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in context,” in Eur. Conf. Comput. Vis.  Zurich, Switzerland: Springer, 2014, pp. 740–755.
  26. S. Liu, Z. Zeng, T. Ren, F. Li, H. Zhang, J. Yang, C. Li, J. Yang, H. Su, J. Zhu et al., “Grounding dino: Marrying dino with grounded pre-training for open-set object detection,” 2023. [Online]. Available: https://arxiv.org/abs/arXiv:2303.05499
  27. W. Liu, X. Wang, J. Owens, and Y. Li, “Energy-based out-of-distribution detection,” Adv. Neural Inform. Process. Syst., vol. 33, pp. 21 464–21 475, 2020.
  28. F. Locatello, D. Weissenborn, T. Unterthiner, A. Mahendran, G. Heigold, J. Uszkoreit, A. Dosovitskiy, and T. Kipf, “Object-centric learning with slot attention,” Adv. Neural Inform. Process. Syst., vol. 33, pp. 11 525–11 538, 2020.
  29. W. Moon, J. Park, H. S. Seong, C.-H. Cho, and J.-P. Heo, “Difficulty-aware simulator for open set recognition,” in Eur. Conf. Comput. Vis.  Tel Aviv, Israel: Springer, 2022, pp. 365–381.
  30. M. A. Munir, M. H. Khan, M. Sarfraz, and M. Ali, “Towards improving calibration in object detection under domain shift,” Adv. Neural Inform. Process. Syst., vol. 35, pp. 38 706–38 718, 2022.
  31. S. Papa, O. Winther, and A. Dittadi, “Inductive biases for object-centric representations in the presence of complex textures,” 2022. [Online]. Available: https://arxiv.org/abs/2204.08479
  32. S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection with region proposal networks,” Adv. Neural Inform. Process. Syst., vol. 28, 2015.
  33. M. Seitzer, M. Horn, A. Zadaianchuk, D. Zietlow, T. Xiao, C.-J. Simon-Gabriel, T. He, Z. Zhang, B. Schölkopf, T. Brox et al., “Bridging the gap to real-world object-centric learning,” 2022. [Online]. Available: https://arxiv.org/abs/2209.14860
  34. G. Singh, F. Deng, and S. Ahn, “Illiterate dall-e learns to compose,” 2019. [Online]. Available: https://arxiv.org/abs/2110.11405
  35. G. Singh, Y.-F. Wu, and S. Ahn, “Simple unsupervised object-centric learning for complex and naturalistic videos,” Adv. Neural Inform. Process. Syst., vol. 35, pp. 18 181–18 196, 2022.
  36. Y. Sun, Y. Ming, X. Zhu, and Y. Li, “Out-of-distribution detection with deep nearest neighbors,” in Int. Conf. on Mach. Learn.  Baltimore, USA: PMLR, 2022, pp. 20 827–20 840.
  37. S. Vaze, K. Han, A. Vedaldi, and A. Zisserman, “Open-set recognition: A good closed-set classifier is all you need?” 2021. [Online]. Available: https://arxiv.org/abs/2110.06207
  38. H. Wang, W. Liu, A. Bocchieri, and Y. Li, “Can multi-label classification networks know what they don’t know?” Adv. Neural Inform. Process. Syst., vol. 34, pp. 29 074–29 087, 2021.
  39. J. Wu, J. Wang, Z. Yang, Z. Gan, Z. Liu, J. Yuan, and L. Wang, “Grit: A generative region-to-text transformer for object understanding,” 2022. [Online]. Available: https://arxiv.org/abs/2212.00280
  40. J. Yang, P. Wang, D. Zou, Z. Zhou, K. Ding, W. Peng, H. Wang, G. Chen, B. Li, Y. Sun et al., “Openood: Benchmarking generalized out-of-distribution detection,” Adv. Neural Inform. Process. Syst., vol. 35, pp. 32 598–32 611, 2022.
  41. J. Yang, K. Zhou, Y. Li, and Z. Liu, “Generalized out-of-distribution detection: A survey,” 2021. [Online]. Available: https://arxiv.org/abs/2110.11334
  42. Y. Zhang, J. Hare, and A. Prugel-Bennett, “Deep set prediction networks,” Adv. Neural Inform. Process. Syst., vol. 32, 2019.
  43. Z. Zhao, J. Wang, M. Horn, Y. Ding, T. He, Z. Bai, D. Zietlow, C.-J. Simon-Gabriel, B. Shuai, Z. Tu et al., “Object-centric multiple object tracking,” in Int. Conf. Comput. Vis., Paris, France, 2023, pp. 16 601–16 611.

Summary

We haven't generated a summary for this paper yet.