Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 89 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A unified Erdős-Pósa theorem for cycles in graphs labelled by multiple abelian groups (2209.09488v1)

Published 20 Sep 2022 in math.CO

Abstract: In 1965, Erd\H{o}s and P\'{o}sa proved that there is a duality between the maximum size of a packing of cycles and the minimum size of a vertex set hitting all cycles. Such a duality does not hold for odd cycles, and Dejter and Neumann-Lara asked in 1988 to find all pairs ${(\ell, z)}$ of integers where such a duality holds for the family of cycles of length $\ell$ modulo $z$. We characterise all such pairs, and we further generalise this characterisation to cycles in graphs labelled with a bounded number of abelian groups, whose values avoid a bounded number of elements of each group. This unifies almost all known types of cycles that admit such a duality, and it also provides new results. Moreover, we characterise the obstructions to such a duality in this setting, and thereby obtain an analogous characterisation for cycles in graphs embeddable on a fixed compact orientable surface.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 2 likes.