Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Delving Globally into Texture and Structure for Image Inpainting (2209.08217v1)

Published 17 Sep 2022 in cs.CV

Abstract: Image inpainting has achieved remarkable progress and inspired abundant methods, where the critical bottleneck is identified as how to fulfill the high-frequency structure and low-frequency texture information on the masked regions with semantics. To this end, deep models exhibit powerful superiority to capture them, yet constrained on the local spatial regions. In this paper, we delve globally into texture and structure information to well capture the semantics for image inpainting. As opposed to the existing arts trapped on the independent local patches, the texture information of each patch is reconstructed from all other patches across the whole image, to match the coarsely filled information, specially the structure information over the masked regions. Unlike the current decoder-only transformer within the pixel level for image inpainting, our model adopts the transformer pipeline paired with both encoder and decoder. On one hand, the encoder captures the texture semantic correlations of all patches across image via self-attention module. On the other hand, an adaptive patch vocabulary is dynamically established in the decoder for the filled patches over the masked regions. Building on this, a structure-texture matching attention module anchored on the known regions comes up to marry the best of these two worlds for progressive inpainting via a probabilistic diffusion process. Our model is orthogonal to the fashionable arts, such as Convolutional Neural Networks (CNNs), Attention and Transformer model, from the perspective of texture and structure information for image inpainting. The extensive experiments over the benchmarks validate its superiority. Our code is available at https://github.com/htyjers/DGTS-Inpainting.

Citations (17)

Summary

We haven't generated a summary for this paper yet.