Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Nonparametric inference for additive models estimated via simplified smooth backfitting (2209.07079v1)

Published 15 Sep 2022 in math.ST, stat.ME, and stat.TH

Abstract: We investigate hypothesis testing in nonparametric additive models estimated using simplified smooth backfitting (Huang and Yu, Journal of Computational and Graphical Statistics, \textbf{28(2)}, 386--400, 2019). Simplified smooth backfitting achieves oracle properties under regularity conditions and provides closed-form expressions of the estimators that are useful for deriving asymptotic properties. We develop a generalized likelihood ratio (GLR) and a loss function (LF) based testing framework for inference. Under the null hypothesis, both the GLR and LF tests have asymptotically rescaled chi-squared distributions, and both exhibit the Wilks phenomenon, which means the scaling constants and degrees of freedom are independent of nuisance parameters. These tests are asymptotically optimal in terms of rates of convergence for nonparametric hypothesis testing. Additionally, the bandwidths that are well-suited for model estimation may be useful for testing. We show that in additive models, the LF test is asymptotically more powerful than the GLR test. We use simulations to demonstrate the Wilks phenomenon and the power of these proposed GLR and LF tests, and a real example to illustrate their usefulness.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)