Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Deep learning in a bilateral brain with hemispheric specialization (2209.06862v9)

Published 9 Sep 2022 in q-bio.NC, cs.AI, cs.LG, and cs.NE

Abstract: The brains of all bilaterally symmetric animals on Earth are divided into left and right hemispheres. The anatomy and functionality of the hemispheres have a large degree of overlap, but there are asymmetries, and they specialise in possesses different attributes. Other authors have used computational models to mimic hemispheric asymmetries with a focus on reproducing human data on semantic and visual processing tasks. We took a different approach and aimed to understand how dual hemispheres in a bilateral architecture interact to perform well in a given task. We propose a bilateral artificial neural network that imitates lateralisation observed in nature: that the left hemisphere specialises in local features and the right in global features. We used different training objectives to achieve the desired specialisation and tested it on an image classification task with two different CNN backbones: ResNet and VGG. Our analysis found that the hemispheres represent complementary features that are exploited by a network head that implements a type of weighted attention. The bilateral architecture outperformed a range of baselines of similar representational capacity that do not exploit differential specialisation, with the exception of a conventional ensemble of unilateral networks trained on dual training objectives for local and global features. The results demonstrate the efficacy of bilateralism, contribute to the discussion of bilateralism in biological brains, and the principle may serve as an inductive bias for new AI systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (52)
  1. A neural network model of lateralization during letter identification. Journal of Cognitive Neuroscience, 11:167–181, 1999. ISSN 0898929X. doi:10.1162/089892999563300. URL /record/1999-05033-003.
  2. Hemispheric specialization and independence for word recognition: A comparison of three computational models. Brain and Language, 89:554–568, 6 2004. ISSN 0093-934X. doi:10.1016/J.BANDL.2004.02.001.
  3. Ya Ning Chang and Matthew A. Lambon Ralph. A unified neurocomputational bilateral model of spoken language production in healthy participants and recovery in poststroke aphasia. Proceedings of the National Academy of Sciences of the United States of America, 117:32779–32790, 12 2020. ISSN 10916490. doi:10.1073/PNAS.2010193117/SUPPL_FILE/PNAS.2010193117.SAPP.PDF. URL https://www.pnas.org/doi/abs/10.1073/pnas.2010193117.
  4. Hemisphere differences in the acquisition and use of descriptive systems. Brain and Language, 14:144–173, 1981. ISSN 0093-934X. doi:https://doi.org/10.1016/0093-934X(81)90072-9. URL https://www.sciencedirect.com/science/article/pii/0093934X81900729.
  5. Lateralization of frontal lobe functions and cognitive novelty. Journal of Neuropsychiatry and Clinical Neurosciences, 6:371–378, 1994. ISSN 08950172. doi:10.1176/JNP.6.4.371. URL /record/1995-12594-001.
  6. Hemispheric asymmetries of cortical volume in the human brain. Cortex, 49:200–210, 2013. ISSN 00109452. doi:10.1016/j.cortex.2011.11.002. URL http://dx.doi.org/10.1016/j.cortex.2011.11.002.
  7. Bilateral brain (v1.0) [computer software], 2022. URL https://github.com/Cerenaut/bilateral-brain.
  8. Why bilateral damage is worse than unilateral damage to the brain. Journal of Cognitive Neuroscience, 25:2107–2123, 12 2013. ISSN 0898-929X. doi:10.1162/JOCN_A_00441. URL https://direct.mit.edu/jocn/article/25/12/2107/28012/Why-Bilateral-Damage-Is-Worse-than-Unilateral.
  9. Two hemispheres—two networks: a computational model explaining hemispheric asymmetries while reading ambiguous words. Annals of Mathematics and Artificial Intelligence 2010 59:1, 59:125–147, 8 2010. ISSN 1573-7470. doi:10.1007/S10472-010-9210-1. URL https://link.springer.com/article/10.1007/s10472-010-9210-1.
  10. Computational studies of lateralization of phoneme sequence generation. Neural Computation, 10:1277–1297, 7 1998. ISSN 0899-7667. doi:10.1162/089976698300017458. URL https://direct.mit.edu/neco/article/10/5/1277/6196/Computational-Studies-of-Lateralization-of-Phoneme.
  11. A computational model of the development of hemispheric asymmetry of face processing. Proceedings of the Annual Meeting of the Cognitive Science Society, 35:35, 2013. ISSN 1069-7977.
  12. Hemispheric asymmetries in the split-fovea model of semantic processing. Brain and Language, 88:339–354, 3 2004. ISSN 0093-934X. doi:10.1016/S0093-934X(03)00165-2.
  13. Hemispheric dissociation and dyslexia in a computational model of reading. Brain and Language, 107:185–193, 12 2008. ISSN 0093-934X. doi:10.1016/J.BANDL.2007.12.005.
  14. Convergence of the visual field split: Hemispheric modeling of face and object recognition. Journal of Cognitive Neuroscience, 20:2298–2307, 12 2008. ISSN 0898929X. doi:10.1162/JOCN.2008.20162.
  15. Organization of face and object recognition in modular neural network models. Neural Networks, 12:1053–1074, 10 1999. ISSN 0893-6080. doi:10.1016/S0893-6080(99)00050-7.
  16. The computational exploration of visual word recognition in a split model. Neural Computation, 13:1171–1198, 5 2001. ISSN 08997667. doi:10.1162/08997660151134370.
  17. Hemispheric asymmetries in cognitive modeling: connectionist modeling of unilateral visual neglect. Psychological review, 111:283–308, 4 2004. ISSN 0033-295X. doi:10.1037/0033-295X.111.2.283. URL https://pubmed.ncbi.nlm.nih.gov/15065911/.
  18. No right to speak? the relationship between object naming and semantic impairment:neuropsychological evidence and a computational model. Journal of Cognitive Neuroscience, 13:341–356, 4 2001. ISSN 0898-929X. doi:10.1162/08989290151137395. URL https://direct.mit.edu/jocn/article/13/3/341/3557/No-Right-to-Speak-The-Relationship-between-Object.
  19. Right and left neural networks – inspired by the bicameral brain, 2021.
  20. Learning to continually learn. volume 325, pages 992–1001. {IOS} Press, 2020. doi:10.3233/FAIA200193. URL https://doi.org/10.3233/FAIA200193.
  21. The functional specialization of visual cortex emerges from training parallel pathways with self-supervised predictive learning. bioRxiv, page 2021.06.18.448989, 2021. URL https://www.biorxiv.org/content/10.1101/2021.06.18.448989v1%0Ahttps://www.biorxiv.org/content/10.1101/2021.06.18.448989v1.abstract%0Ahttps://www.biorxiv.org/content/10.1101/2021.06.18.448989v1%0Ahttps://www.biorxiv.org/content/10.1101/2021.06.18.448989v1.
  22. What matters in branch specialization? using a toy task to make predictions. 2021. URL https://openreview.net/forum?id=0kPS1i6wict.
  23. Ensemble learning: A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8:e1249, 7 2018. ISSN 1942-4795. doi:10.1002/WIDM.1249. URL https://onlinelibrary.wiley.com/doi/full/10.1002/widm.1249https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.1249https://wires.onlinelibrary.wiley.com/doi/10.1002/widm.1249.
  24. Coevolutionary learning of neural network ensemble for complex classification tasks. Pattern Recognition, 45:1373–1385, 4 2012. ISSN 0031-3203. doi:10.1016/J.PATCOG.2011.09.012.
  25. Why m heads are better than one: Training a diverse ensemble of deep networks. 11 2015. doi:10.48550/arxiv.1511.06314. URL https://arxiv.org/abs/1511.06314v1.
  26. A dynamic ensemble learning algorithm for neural networks. Neural Computing and Applications, 32:8675–8690, 6 2020. ISSN 14333058. doi:10.1007/S00521-019-04359-7/TABLES/9. URL https://link.springer.com/article/10.1007/s00521-019-04359-7.
  27. Multi-Domain Active Learning: Literature Review and Comparative Study, October 2022. URL http://arxiv.org/abs/2106.13516. arXiv:2106.13516 [cs].
  28. Multi-domain learning: when do domains matter? In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pages 1302–1312, 2012.
  29. Branch-activated multi-domain convolutional neural network for visual tracking. Journal of Shanghai Jiaotong University (Science), 23:360–367, 2018.
  30. Alex Krizhevsky. Learning multiple layers of features from tiny images, 2009.
  31. Imagenet: A large-scale hierarchical image database. pages 248–255, 3 2010. doi:10.1109/CVPR.2009.5206848.
  32. Human-level concept learning through probabilistic program induction. Science, 350:1332–1338, 2015. ISSN 10959203. doi:10.1126/science.aab3050.
  33. Meta-dataset: A dataset of datasets for learning to learn from few examples. 3 2020. doi:10.48550/arxiv.1903.03096. URL https://arxiv.org/abs/1903.03096v4.
  34. Online fast adaptation and knowledge accumulation (osaka): a new approach to continual learning. Advances in Neural Information Processing Systems, 33:16532–16545, 2020. URL https://github.com/ElementAI/osaka.
  35. Deep residual learning for image recognition. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-Decem:770–778, 9 2015. ISSN 10636919. doi:10.48550/arxiv.1512.03385. URL https://arxiv.org/abs/1512.03385v1.
  36. Very Deep Convolutional Networks for Large-Scale Image Recognition, April 2015. URL http://arxiv.org/abs/1409.1556. arXiv:1409.1556 [cs].
  37. Training Neural Networks with Local Error Signals, May 2019. URL http://arxiv.org/abs/1901.06656. arXiv:1901.06656 [cs, stat].
  38. Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15:1929–1958, 2014.
  39. Adam: A method for stochastic optimization. 9 2014. URL http://arxiv.org/abs/1412.6980.
  40. William Falcon and contributors. Pytorch lightning (v1.4.1) [computer software], 2019. URL https://github.com/PyTorchLightning/pytorch-lightning.
  41. Pytorch: An imperative style, high-performance deep learning library. Advances in Neural Information Processing Systems, 32, 2019. ISSN 10495258.
  42. Grad-cam++: Improved visual explanations for deep convolutional networks. 9 2017. doi:10.1109/WACV.2018.00097. URL http://arxiv.org/abs/1710.11063http://dx.doi.org/10.1109/WACV.2018.00097.
  43. Grad-cam: Visual explanations from deep networks via gradient-based localization. 9 2016. doi:10.1007/s11263-019-01228-7. URL http://arxiv.org/abs/1610.02391http://dx.doi.org/10.1007/s11263-019-01228-7.
  44. Jacob Gildenblat and contributors. Pytorch library for cam methods (v1.4.5) [computer software], 2021. URL https://github.com/jacobgil/pytorch-grad-cam.
  45. Richard G. Carson. Inter-hemispheric inhibition sculpts the output of neural circuits by co-opting the two cerebral hemispheres. The Journal of Physiology, 598:4781–4802, 11 2020. ISSN 1469-7793. doi:10.1113/JP279793. URL https://onlinelibrary.wiley.com/doi/full/10.1113/JP279793https://onlinelibrary.wiley.com/doi/abs/10.1113/JP279793https://physoc.onlinelibrary.wiley.com/doi/10.1113/JP279793.
  46. The role of the right cerebral hemisphere in processing novel metaphoric expressions: A transcranial magnetic stimulation study. Journal of Cognitive Neuroscience, 20:170–181, 1 2008. ISSN 0898-929X. doi:10.1162/JOCN.2008.20005. URL https://direct.mit.edu/jocn/article/20/1/170/4440/The-Role-of-the-Right-Cerebral-Hemisphere-in.
  47. Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102:419–457, 1995. ISSN 0033295X. doi:10.1037/0033-295X.102.3.419.
  48. Complementary learning systems. Cognitive Science, 38:1229–1248, 2014. ISSN 03640213. doi:10.1111/j.1551-6709.2011.01214.x.
  49. Left-right dissociation of hippocampal memory processes in mice. Proceedings of the National Academy of Sciences of the United States of America, 111:15238–15243, 10 2014. ISSN 10916490. doi:10.1073/PNAS.1405648111/SUPPL_FILE/PNAS.201405648SI.PDF. URL https://www.pnas.org/doi/abs/10.1073/pnas.1405648111.
  50. Synaptic plasticity and memory. http://dx.doi.org/10.1177/1073858414550658, 21:490–502, 9 2014. ISSN 10894098. doi:10.1177/1073858414550658. URL https://journals.sagepub.com/doi/abs/10.1177/1073858414550658.
  51. Robert L. Sainburg. Handedness: Differential specializations for control of trajectory and position. Exercise and Sport Sciences Reviews, 33:206–213, 10 2005. ISSN 0091-6331. doi:10.1097/00003677-200510000-00010. URL https://pennstate.pure.elsevier.com/en/publications/handedness-differential-specializations-for-control-of-trajectory.
  52. Elkhonon. Goldberg. The new executive brain: frontal lobes in a complex world. Oxford University Press, 2009. ISBN 9780195329407.
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 1 like.