Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

KSG: Knowledge and Skill Graph (2209.05698v1)

Published 13 Sep 2022 in cs.AI

Abstract: The knowledge graph (KG) is an essential form of knowledge representation that has grown in prominence in recent years. Because it concentrates on nominal entities and their relationships, traditional knowledge graphs are static and encyclopedic in nature. On this basis, event knowledge graph (Event KG) models the temporal and spatial dynamics by text processing to facilitate downstream applications, such as question-answering, recommendation and intelligent search. Existing KG research, on the other hand, mostly focuses on text processing and static facts, ignoring the vast quantity of dynamic behavioral information included in photos, movies, and pre-trained neural networks. In addition, no effort has been done to include behavioral intelligence information into the knowledge graph for deep reinforcement learning (DRL) and robot learning. In this paper, we propose a novel dynamic knowledge and skill graph (KSG), and then we develop a basic and specific KSG based on CN-DBpedia. The nodes are divided into entity and attribute nodes, with entity nodes containing the agent, environment, and skill (DRL policy or policy representation), and attribute nodes containing the entity description, pre-train network, and offline dataset. KSG can search for different agents' skills in various environments and provide transferable information for acquiring new skills. This is the first study that we are aware of that looks into dynamic KSG for skill retrieval and learning. Extensive experimental results on new skill learning show that KSG boosts new skill learning efficiency.

Citations (3)

Summary

We haven't generated a summary for this paper yet.