Papers
Topics
Authors
Recent
Search
2000 character limit reached

The Weak Chebyshev Greedy Algorithm (WCGA) in $L^p (\log L)^α$ spaces

Published 12 Sep 2022 in math.FA, cs.NA, math.CT, and math.NA | (2209.05404v1)

Abstract: We present some new results concerning Lebesgue-type inequalities for the Weak Chebyshev Greedy Algorithm (WCGA) in uniformly smooth Banach spaces $\mathbb{X}$. First, we generalize a result of Temlyakov to cover situations in which the modulus of smoothness and the so called A3 parameter are not necessarily power functions. Secondly, we apply this new theorem to the Zygmund spaces $\mathbb{X}=Lp(\log L)\alpha$, with $1<p<\infty$ and $\alpha\in\mathbb{R}$, and show that, when the Haar system is used, then optimal recovery of $N$-sparse signals occurs when the number of iterations is $\phi(N)=O(N^{\max\{1,2/p'\}} \,(\log N)^{|\alpha| p'})$. Moreover, this quantity is sharp when $p\leq 2$. Finally, an expression for $\phi(N)$ in the case of the trigonometric system is also given, which in the special case of $L^2(\log L)^\alpha$, with $\alpha\>0$, takes the form $\phi(N)\approx \log(\log N)$.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.