Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Trustworthy Federated Learning via Blockchain (2209.04418v1)

Published 13 Aug 2022 in cs.LG, cs.CR, cs.NI, and eess.SP

Abstract: The safety-critical scenarios of AI, such as autonomous driving, Internet of Things, smart healthcare, etc., have raised critical requirements of trustworthy AI to guarantee the privacy and security with reliable decisions. As a nascent branch for trustworthy AI, federated learning (FL) has been regarded as a promising privacy preserving framework for training a global AI model over collaborative devices. However, security challenges still exist in the FL framework, e.g., Byzantine attacks from malicious devices, and model tampering attacks from malicious server, which will degrade or destroy the accuracy of trained global AI model. In this paper, we shall propose a decentralized blockchain based FL (B-FL) architecture by using a secure global aggregation algorithm to resist malicious devices, and deploying practical Byzantine fault tolerance consensus protocol with high effectiveness and low energy consumption among multiple edge servers to prevent model tampering from the malicious server. However, to implement B-FL system at the network edge, multiple rounds of cross-validation in blockchain consensus protocol will induce long training latency. We thus formulate a network optimization problem that jointly considers bandwidth and power allocation for the minimization of long-term average training latency consisting of progressive learning rounds. We further propose to transform the network optimization problem as a Markov decision process and leverage the deep reinforcement learning based algorithm to provide high system performance with low computational complexity. Simulation results demonstrate that B-FL can resist malicious attacks from edge devices and servers, and the training latency of B-FL can be significantly reduced by deep reinforcement learning based algorithm compared with baseline algorithms.

Citations (59)

Summary

We haven't generated a summary for this paper yet.