Papers
Topics
Authors
Recent
Search
2000 character limit reached

Multilevel Path Branching for Digital Options

Published 7 Sep 2022 in math.NA, cs.NA, and q-fin.CP | (2209.03017v2)

Abstract: We propose a new Monte Carlo-based estimator for digital options with assets modelled by a stochastic differential equation (SDE). The new estimator is based on repeated path splitting and relies on the correlation of approximate paths of the underlying SDE that share parts of a Brownian path. Combining this new estimator with Multilevel Monte Carlo (MLMC) leads to an estimator with a computational complexity that is similar to the complexity of a MLMC estimator when applied to options with Lipschitz payoffs. This preprint includes detailed calculations and proofs (in grey colour) which are not peer-reviewed and not included in the published article.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.