Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Importance Sampling for Pathwise Sensitivity of Stochastic Chaotic Systems (2005.12160v1)

Published 25 May 2020 in math.NA and cs.NA

Abstract: This paper proposes a new pathwise sensitivity estimator for chaotic SDEs. By introducing a spring term between the original and perturbated SDEs, we derive a new estimator by importance sampling. The variance of the new estimator increases only linearly in time $T,$ compared with the exponential increase of the standard pathwise estimator. We compare our estimator with the Malliavin estimator and extend both of them to the Multilevel Monte Carlo method, which further improves the computational efficiency. Finally, we also consider using this estimator for the SDE with small volatility to approximate the sensitivities of the invariant measure of chaotic ODEs. Furthermore, Richardson-Romberg extrapolation on the volatility parameter gives a more accurate and efficient estimator. Numerical experiments support our analysis.

Citations (3)

Summary

We haven't generated a summary for this paper yet.