Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semi-supervised Crowd Counting via Density Agency (2209.02955v1)

Published 7 Sep 2022 in cs.CV

Abstract: In this paper, we propose a new agency-guided semi-supervised counting approach. First, we build a learnable auxiliary structure, namely the density agency to bring the recognized foreground regional features close to corresponding density sub-classes (agents) and push away background ones. Second, we propose a density-guided contrastive learning loss to consolidate the backbone feature extractor. Third, we build a regression head by using a transformer structure to refine the foreground features further. Finally, an efficient noise depression loss is provided to minimize the negative influence of annotation noises. Extensive experiments on four challenging crowd counting datasets demonstrate that our method achieves superior performance to the state-of-the-art semi-supervised counting methods by a large margin. Code is available.

Citations (23)

Summary

We haven't generated a summary for this paper yet.