Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semi-Supervised Crowd Counting with Contextual Modeling: Facilitating Holistic Understanding of Crowd Scenes (2310.10352v3)

Published 16 Oct 2023 in cs.CV

Abstract: To alleviate the heavy annotation burden for training a reliable crowd counting model and thus make the model more practicable and accurate by being able to benefit from more data, this paper presents a new semi-supervised method based on the mean teacher framework. When there is a scarcity of labeled data available, the model is prone to overfit local patches. Within such contexts, the conventional approach of solely improving the accuracy of local patch predictions through unlabeled data proves inadequate. Consequently, we propose a more nuanced approach: fostering the model's intrinsic 'subitizing' capability. This ability allows the model to accurately estimate the count in regions by leveraging its understanding of the crowd scenes, mirroring the human cognitive process. To achieve this goal, we apply masking on unlabeled data, guiding the model to make predictions for these masked patches based on the holistic cues. Furthermore, to help with feature learning, herein we incorporate a fine-grained density classification task. Our method is general and applicable to most existing crowd counting methods as it doesn't have strict structural or loss constraints. In addition, we observe that the model trained with our framework exhibits a 'subitizing'-like behavior. It accurately predicts low-density regions with only a 'glance', while incorporating local details to predict high-density regions. Our method achieves the state-of-the-art performance, surpassing previous approaches by a large margin on challenging benchmarks such as ShanghaiTech A and UCF-QNRF. The code is available at: https://github.com/cha15yq/MRC-Crowd.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (82)
  1. J. C. Silveira Jacques Junior, S. R. Musse, and C. R. Jung, “Crowd analysis using computer vision techniques,” IEEE Signal Processing Magazine, vol. 27, no. 5, pp. 66–77, 2010.
  2. Y. Qian, G. R. W. Humphries, P. N. Trathan, A. Lowther, and C. R. Donovan, “Counting animals in aerial images with a density map estimation model,” Ecology and Evolution, vol. 13, no. 4, p. e9903, 2023.
  3. Z. Ma, X. Wei, X. Hong, and Y. Gong, “Bayesian loss for crowd count estimation with point supervision,” in Proceedings of the IEEE International Conference on Computer Vision, 2019, pp. 6142–6151.
  4. B. Wang, H. Liu, D. Samaras, and M. Hoai, “Distribution matching for crowd counting,” in Advances in Neural Information Processing Systems, 2020.
  5. H. Lin, Z. Ma, R. Ji, Y. Wang, and X. Hong, “Boosting crowd counting via multifaceted attention,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022.   IEEE, 2022, pp. 19 596–19 605.
  6. T. Han, L. Bai, L. Liu, and W. Ouyang, “Steerer: Resolving scale variations for counting and localization via selective inheritance learning,” in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2023, pp. 21 848–21 859.
  7. W. Shu, J. Wan, and A. B. Chan, “Generalized characteristic function loss for crowd analysis in the frequency domain,” IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1–17, 2023.
  8. Q. Zhang and A. B. Chan, “3d crowd counting via geometric attention-guided multi-view fusion,” International Journal of Computer Vision, vol. 130, pp. 3123–3139, 2022.
  9. Q. Wang, J. Gao, W. Lin, and X. Li, “Nwpu-crowd: A large-scale benchmark for crowd counting and localization,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 6, pp. 2141–2149, 2021.
  10. Z. Zhang, M.-C. Chang, and T. D. Bui, “Improving class activation map for weakly supervised object localization,” in ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2022, pp. 2624–2628.
  11. Y. Chen, M. Mancini, X. Zhu, and Z. Akata, “Semi-supervised and unsupervised deep visual learning: A survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PP, pp. 1–23, 08 2022.
  12. X. Yang, Z. Song, I. King, and Z. Xu, “A survey on deep semi-supervised learning,” IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 9, pp. 8934–8954, 2023.
  13. X. Wang, Y. Zhan, Y. Zhao, T. Yang, and Q. Ruan, “Hybrid perturbation strategy for semi-supervised crowd counting,” IEEE Transactions on Image Processing, vol. 33, pp. 1227–1240, 2024.
  14. A. Tarvainen and H. Valpola, “Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results,” in 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Workshop Track Proceedings.   OpenReview.net, 2017.
  15. D.-H. Lee, “Pseudo-label : The simple and efficient semi-supervised learning method for deep neural networks,” ICML 2013 Workshop : Challenges in Representation Learning (WREPL), 07 2013.
  16. V. Lempitsky and A. Zisserman, “Learning to count objects in images,” in Advances in Neural Information Processing Systems, J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, Eds., vol. 23.   Curran Associates, Inc., 2010.
  17. V. Ranjan, B. Wang, M. Shah, and M. Hoai, “Uncertainty estimation and sample selection for crowd counting,” in Proceedings of the Asian Conference on Computer Vision (ACCV), November 2020.
  18. X. Wang, Y. Zhan, Y. Zhao, T. Yang, and Q. Ruan, “Semi-supervised crowd counting with spatial temporal consistency and pseudo-label filter,” IEEE Transactions on Circuits and Systems for Video Technology, pp. 1–1, 2023.
  19. Y. Meng, H. Zhang, Y. Zhao, X. Yang, X. Qian, X. Huang, and Y. Zheng, “Spatial uncertainty-aware semi-supervised crowd counting,” 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 15 529–15 539, 2021.
  20. Z. Zhao, F. Zhou, K. Xu, Z. Zeng, C. Guan, and S. K. Zhou, “Le-uda: Label-efficient unsupervised domain adaptation for medical image segmentation,” IEEE Transactions on Medical Imaging, vol. 42, no. 3, pp. 633–646, 2022.
  21. Z. Zhao, K. Xu, S. Li, Z. Zeng, and C. Guan, “Mt-uda: Towards unsupervised cross-modality medical image segmentation with limited source labels,” in Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part I 24.   Springer, 2021, pp. 293–303.
  22. Z. Zhao, J. Hu, Z. Zeng, X. Yang, P. Qian, B. Veeravalli, and C. Guan, “Mmgl: Multi-scale multi-view global-local contrastive learning for semi-supervised cardiac image segmentation,” in 2022 IEEE international conference on image processing (ICIP).   IEEE, 2022, pp. 401–405.
  23. Z. Zhao, A. Zhu, Z. Zeng, B. Veeravalli, and C. Guan, “Act-net: Asymmetric co-teacher network for semi-supervised memory-efficient medical image segmentation,” in 2022 IEEE International Conference on Image Processing (ICIP).   IEEE, 2022, pp. 1426–1430.
  24. S. Li, Z. Zhao, K. Xu, Z. Zeng, and C. Guan, “Hierarchical consistency regularized mean teacher for semi-supervised 3d left atrium segmentation,” in 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC).   IEEE, 2021, pp. 3395–3398.
  25. Semi-supervised self-taught deep learning for finger bones segmentation.   IEEE, 2019.
  26. P. Zhu, J. Li, B. Cao, and Q. Hu, “Multi-task credible pseudo-label learning for semi-supervised crowd counting,” IEEE Transactions on Neural Networks and Learning Systems, pp. 1–13, 2023.
  27. C. Wei, K. Sohn, C. Mellina, A. Yuille, and F. Yang, “Crest: A class-rebalancing self-training framework for imbalanced semi-supervised learning,” in 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021, pp. 10 852–10 861.
  28. W. S. Jevons, “The power of numerical discrimination,” Nature, vol. 3, pp. 281–282, 1871.
  29. H. J. Gross, M. Pahl, A. Si, H. Zhu, J. Tautz, and S.-W. Zhang, “Number-based visual generalisation in the honeybee,” PLoS ONE, vol. 4, 2009.
  30. M. Pahl, A. Si, and S. Zhang, “Numerical cognition in bees and other insects,” Frontiers in Psychology, vol. 4, 2013.
  31. B. R. J. Jansen, A. D. Hofman, M. Straatemeier, B. M. C. W. van Bers, M. E. J. Raijmakers, and H. L. J. van der Maas, “The role of pattern recognition in children’s exact enumeration of small numbers,” British Journal of Developmental Psychology, vol. 32, no. 2, pp. 178–194, 2014.
  32. D. H. Clements, “Subitizing: What is it? why teach it?.” Teaching children mathematics, vol. 5, 1999.
  33. G. Mandler and B. J. Shebo, “Subitizing: an analysis of its component processes.” Journal of experimental psychology. General, vol. 111 1, pp. 1–22, 1982.
  34. Z. Zhang and M. Hoai, “Object detection with self-supervised scene adaptation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2023, pp. 21 589–21 599.
  35. A. Rasmus, M. Berglund, M. Honkala, H. Valpola, and T. Raiko, “Semi-supervised learning with ladder networks,” in Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada, C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, Eds., 2015, pp. 3546–3554.
  36. T. Miyato, S.-I. Maeda, M. Koyama, and S. Ishii, “Virtual adversarial training: A regularization method for supervised and semi-supervised learning,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 41, no. 8, pp. 1979–1993, 2019.
  37. S. Zhang, L. Yang, M. B. Mi, X. Zheng, and A. Yao, “Improving deep regression with ordinal entropy,” in The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.   OpenReview.net, 2023.
  38. H. Idrees, M. Tayyab, K. Athrey, D. Zhang, S. Al-Maadeed, N. Rajpoot, and M. Shah, “Composition loss for counting, density map estimation and localization in dense crowds,” in Computer Vision – ECCV 2018, V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, Eds.   Cham: Springer International Publishing, 2018, pp. 544–559.
  39. J. Gao, Q. Wang, and X. Li, “Pcc net: Perspective crowd counting via spatial convolutional network,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 30, pp. 3486–3498, 2019.
  40. M. Zhao, C. Zhang, J. Zhang, F. Porikli, B. Ni, and W. Zhang, “Scale-aware crowd counting via depth-embedded convolutional neural networks,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 30, no. 10, pp. 3651–3662, 2020.
  41. U. Sajid, H. Sajid, H. Wang, and G. Wang, “Zoomcount: A zooming mechanism for crowd counting in static images,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 30, no. 10, pp. 3499–3512, 2020.
  42. Y. Liu, G. Cao, H. Shi, and Y. Hu, “Lw-count: An effective lightweight encoding-decoding crowd counting network,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 32, no. 10, pp. 6821–6834, 2022.
  43. S. Jiang, X. Lu, Y. Lei, and L. Liu, “Mask-aware networks for crowd counting,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 30, no. 9, pp. 3119–3129, 2020.
  44. X. Jiang, L. Zhang, M. Xu, T. Zhang, P. Lv, B. Zhou, X. Yang, and Y. Pang, “Attention scaling for crowd counting,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 4705–4714.
  45. Z. Yan, Y. Qi, G. Li, X. Liu, W. Zhang, M.-H. Yang, and Q. Huang, “Progressive multi-resolution loss for crowd counting,” IEEE Transactions on Circuits and Systems for Video Technology, pp. 1–1, 2023.
  46. X. Liu, G. Li, Z. Han, W. Zhang, Y. Yang, Q. Huang, and N. Sebe, “Exploiting sample correlation for crowd counting with multi-expert network,” in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2021, pp. 3215–3224.
  47. Y. Zhang, D. Zhou, S. Chen, S. Gao, and Y. Ma, “Single-image crowd counting via multi-column convolutional neural network,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 589–597.
  48. Y. Li, X. Zhang, and D. Chen, “Csrnet: Dilated convolutional neural networks for understanding the highly congested scenes,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 1091–1100.
  49. J. Wan, Q. Wu, and A. B. Chan, “Modeling noisy annotations for point-wise supervision,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, pp. 15 065–15 080, 2023.
  50. Z. Ma, X. Wei, X. Hong, H. Lin, Y. Qiu, and Y. Gong, “Learning to count via unbalanced optimal transport,” in Proceedings of the AAAI Conference on Artificial Intelligence.   AAAI Press, 2021, pp. 2319–2327.
  51. J. Wan, Z. Liu, and A. B. Chan, “A generalized loss function for crowd counting and localization,” in 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021, pp. 1974–1983.
  52. H. Lin, X. Hong, Z. Ma, X. Wei, Y. Qiu, Y. Wang, and Y. Gong, “Direct measure matching for crowd counting,” in Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal, Canada, 19-27 August 2021, Z. Zhou, Ed.   ijcai.org, 2021, pp. 837–844.
  53. M. Zhao, J. Zhang, C. Zhang, and W. Zhang, “Leveraging heterogeneous auxiliary tasks to assist crowd counting,” in IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019.   Computer Vision Foundation / IEEE, 2019, pp. 12 736–12 745.
  54. Z. Shi, P. Mettes, and C. Snoek, “Counting with focus for free,” in 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 - November 2, 2019.   IEEE, 2019, pp. 4199–4208.
  55. Z. Shi, P. Mettes, and C. G. M. Snoek, “Focus for free in density-based counting,” ArXiv, vol. abs/2306.05129, 2023.
  56. Y. Yang, G. Li, D. Du, Q. Huang, and N. Sebe, “Embedding perspective analysis into multi-column convolutional neural network for crowd counting,” IEEE Transactions on Image Processing, vol. 30, pp. 1395–1407, 2021.
  57. G. Sun, Y. Liu, T. Probst, D. P. Paudel, N. Popovic, and L. V. Gool, “Boosting crowd counting with transformers,” ArXiv, vol. abs/2105.10926, 2021.
  58. Y. Qian, L. Zhang, X. Hong, C. Donovan, and O. Arandjelovic, “Segmentation assisted u-shaped multi-scale transformer for crowd counting,” in 33rd British Machine Vision Conference 2022, BMVC 2022, London, UK, November 21-24, 2022.   BMVA Press, 2022, p. 397.
  59. Z.-K. Huang, W.-T. Chen, Y.-C. Chiang, S.-Y. Kuo, and M.-H. Yang, “Counting crowds in bad weather,” in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2023, pp. 23 308–23 319.
  60. Z. Wu, L. Liu, Y. Zhang, M. Mao, L. Lin, and G. Li, “Multimodal crowd counting with mutual attention transformers,” in 2022 IEEE International Conference on Multimedia and Expo (ICME), 2022, pp. 1–6.
  61. L. Liu, J. Chen, H. Wu, G. Li, C. Li, and L. Lin, “Cross-modal collaborative representation learning and a large-scale rgbt benchmark for crowd counting,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2021, pp. 4823–4833.
  62. L. Liu, H. Lu, H. Xiong, K. Xian, Z. Cao, and C. Shen, “Counting objects by blockwise classification,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 30, no. 10, pp. 3513–3527, 2020.
  63. H. Xiong, H. Lu, C. Liu, L. Liang, Z. Cao, and C. Shen, “From open set to closed set: Counting objects by spatial divide-and-conquer,” in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2019, pp. 8362–8371.
  64. C. Wang, Q. Song, B. Zhang, Y. Wang, Y. Tai, X. Hu, C. Wang, J. Li, J. Ma, and Y. Wu, “Uniformity in heterogeneity: Diving deep into count interval partition for crowd counting,” in 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada, October 10-17, 2021.   IEEE, 2021, pp. 3214–3222.
  65. Z. Zhao, P. Qian, X. Yang, Z. Zeng, C. Guan, W. L. Tam, and X. Li, “Semignn-ppi: Self-ensembling multi-graph neural network for efficient and generalizable protein–protein interaction prediction,” in Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI-23, E. Elkind, Ed.   International Joint Conferences on Artificial Intelligence Organization, 8 2023, pp. 4984–4992, main Track. [Online]. Available: https://doi.org/10.24963/ijcai.2023/554
  66. Z. Zhao, M. Xu, P. Qian, R. Pahwa, and richard chang, “Da-cil: Towards domain adaptive class-incremental 3d object detection,” in 33rd British Machine Vision Conference 2022, BMVC 2022, London, UK, November 21-24, 2022.   BMVA Press, 2022. [Online]. Available: https://bmvc2022.mpi-inf.mpg.de/0916.pdf
  67. R. S. Pahwa, R. Chang, W. Jie, Z. Ziyuan, C. Lile, X. Xun, F. C. Sheng, C. S. Choong, and V. S. Rao, “3d defect detection and metrology of hbms using semi-supervised deep learning,” in 2023 IEEE 73rd Electronic Components and Technology Conference (ECTC).   IEEE, 2023, pp. 943–950.
  68. Y. Yang, G. Li, Z. Wu, L. Su, Q. Huang, and N. Sebe, “Weakly-supervised crowd counting learns from sorting rather than locations,” in Computer Vision – ECCV 2020, A. Vedaldi, H. Bischof, T. Brox, and J.-M. Frahm, Eds.   Cham: Springer International Publishing, 2020, pp. 1–17.
  69. Y. Lei, Y. Liu, P. Zhang, and L. Liu, “Towards using count-level weak supervision for crowd counting,” Pattern Recognit., vol. 109, p. 107616, 2021. [Online]. Available: https://doi.org/10.1016/j.patcog.2020.107616
  70. W. Lin and A. B. Chan, “Optimal transport minimization: Crowd localization on density maps for semi-supervised counting,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2023, pp. 21 663–21 673.
  71. Z. Guo, W. Li, Y. Qian, O. Arandjelović, and L. Fang, “A white-box false positive adversarial attack method on contrastive loss-based offline handwritten signature verification models,” 2023.
  72. X. Liu, J. van de Weijer, and A. D. Bagdanov, “Leveraging unlabeled data for crowd counting by learning to rank,” in 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018.   Computer Vision Foundation / IEEE Computer Society, 2018, pp. 7661–7669.
  73. Y. Liu, L. Liu, P. Wang, P. Zhang, and Y. Lei, “Semi-supervised crowd counting via self-training on surrogate tasks,” in Computer Vision - ECCV 2020 - 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XV, ser. Lecture Notes in Computer Science, A. Vedaldi, H. Bischof, T. Brox, and J. Frahm, Eds., vol. 12360.   Springer, 2020, pp. 242–259.
  74. H. Lin, Z. Ma, X. Hong, Y. Wang, and Z. Su, “Semi-supervised crowd counting via density agency,” in Proceedings of the 30th ACM International Conference on Multimedia, ser. MM ’22.   New York, NY, USA: Association for Computing Machinery, 2022, p. 1416–1426.
  75. G. French and M. Mackiewicz, “Colour augmentation for improved semi-supervised semantic segmentation,” in Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2022, Volume 4: VISAPP, Online Streaming, February 6-8, 2022, G. M. Farinella, P. Radeva, and K. Bouatouch, Eds.   SCITEPRESS, 2022, pp. 356–363.
  76. C. LI, X. Hu, S. Abousamra, and C. Chen, “Calibrating uncertainty for semi-supervised crowd counting,” in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2023, pp. 16 731–16 741.
  77. Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.
  78. R. Shwartz-Ziv and N. Tishby, “Opening the black box of deep neural networks via information,” ArXiv, vol. abs/1703.00810, 2017.
  79. Z. Xie, Z. Zhang, Y. Cao, Y. Lin, J. Bao, Z. Yao, Q. Dai, and H. Hu, “Simmim: a simple framework for masked image modeling,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022.   IEEE, 2022, pp. 9643–9653.
  80. V. A. Sindagi, R. Yasarla, and V. M. Patel, “Jhu-crowd++: Large-scale crowd counting dataset and a benchmark method,” Technical Report, 2020.
  81. V. A. Sindagi, R. Yasarla, D. S. Babu, R. V. Babu, and V. M. Patel, “Learning to count in the crowd from limited labeled data,” in Computer Vision – ECCV 2020, A. Vedaldi, H. Bischof, T. Brox, and J.-M. Frahm, Eds.   Cham: Springer International Publishing, 2020, pp. 212–229.
  82. I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” in International Conference on Learning Representations, 2017.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Yifei Qian (7 papers)
  2. Xiaopeng Hong (59 papers)
  3. Zhongliang Guo (14 papers)
  4. Carl R. Donovan (2 papers)
  5. Ognjen Arandjelović (16 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.