Opinion dynamics on directed complex networks (2209.00969v2)
Abstract: We propose and analyze a mathematical model for the evolution of opinions on directed complex networks. Our model generalizes the popular DeGroot and Friedkin-Johnsen models by allowing vertices to have attributes that may influence the opinion dynamics. We start by establishing sufficient conditions for the existence of a stationary opinion distribution on any fixed graph, and then provide an increasingly detailed characterization of its behavior by considering a sequence of directed random graphs having a local weak limit. Our most explicit results are obtained for graph sequences whose local weak limit is a marked Galton-Watson tree, in which case our model can be used to explain a variety of phenomena, e.g., conditions under which consensus can be achieved, mechanisms in which opinions can become polarized, and the effect of disruptive stubborn agents on the formation of opinions.