Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Minimum Flow Decomposition in Graphs with Cycles using Integer Linear Programming (2209.00042v4)

Published 31 Aug 2022 in cs.DS, math.CO, math.OC, and q-bio.GN

Abstract: Minimum flow decomposition (MFD) -- the problem of finding a minimum set of weighted source-to-sink paths that perfectly decomposes a flow -- is a classical problem in Computer Science, and variants of it are powerful models in different fields such as Bioinformatics and Transportation. Even on acyclic graphs, the problem is NP-hard, and most practical solutions have been via heuristics or approximations. While there is an extensive body of research on acyclic graphs, currently, there is no \emph{exact} solution on graphs with cycles. In this paper, we present the first ILP formulation for three natural variants of the MFD problem in graphs with cycles, asking for a decomposition consisting only of weighted source-to-sink paths or cycles, trails, and walks, respectively. On three datasets of increasing levels of complexity from both Bioinformatics and Transportation, our approaches solve any instance in under 10 minutes. Our implementations are freely available at github.com/algbio/MFD-ILP.

Citations (5)

Summary

We haven't generated a summary for this paper yet.