Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Safety and Completeness in Flow Decompositions for RNA Assembly (2201.10372v1)

Published 25 Jan 2022 in cs.DS and q-bio.GN

Abstract: Decomposing a network flow into weighted paths has numerous applications. Some applications require any decomposition that is optimal w.r.t. some property such as number of paths, robustness, or length. Many bioinformatic applications require a specific decomposition where the paths correspond to some underlying data that generated the flow. For real inputs, no optimization criteria guarantees to uniquely identify the correct decomposition. Therefore, we propose to report safe paths, i.e., subpaths of at least one path in every flow decomposition. Ma, Zheng, and Kingsford [WABI 2020] addressed the existence of multiple optimal solutions in a probabilistic framework, i.e., non-identifiability. Later [RECOMB 2021], they gave a quadratic-time algorithm based on a global criterion for solving a problem called AND-Quant, which generalizes the problem of reporting whether a given path is safe. We give the first local characterization of safe paths for flow decompositions in directed acyclic graphs (DAGs), leading to a practical algorithm for finding the complete set of safe paths. We evaluated our algorithms against the trivial safe algorithms (unitigs, extended unitigs) and the popularly used heuristic (greedy-width) for flow decomposition on RNA transcripts datasets. Despite maintaining perfect precision our algorithm reports significantly higher coverage ($\approx 50\%$ more) than trivial safe algorithms. The greedy-width algorithm though reporting a better coverage, has significantly lower precision on complex graphs. Overall, our algorithm outperforms (by $\approx 20\%$) greedy-width on a unified metric (F-Score) when the dataset has significant number of complex graphs. Moreover, it has superior time ($3-5\times$) and space efficiency ($1.2-2.2\times$), resulting in a better and more practical approach for bioinformatics applications of flow decomposition.

Citations (13)

Summary

We haven't generated a summary for this paper yet.