Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Kimi K2 186 tok/s Pro
2000 character limit reached

Homological theory of orthogonal modules (2208.14712v2)

Published 31 Aug 2022 in math.RT and math.RA

Abstract: Tachikawa's second conjecture predicts that a finitely generated, orthogonal module over a finite-dimensional self-injective algebra is projective. This conjecture is an important part of the Nakayama conjecture. Our principal motivation of this work is a systematic understanding of finitely generated, orthogonal generators over a self-injective Artin algebra from the view point of stable module categories. As a result, for an orthogonal generator M, we establish a recollement of the M-relative stable categories, describe compact objects of the right term of the recollement, and give equivalent characterizations of Tachikawa's second conjecture in terms of M-Gorenstein categories. Further, we introduce Gorenstein-Morita algebras and show that the Nakayama conjecture holds true for them.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.