Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Time Consistency for Multistage Stochastic Optimization Problems under Constraints in Expectation (2208.13522v1)

Published 29 Aug 2022 in math.OC

Abstract: We consider sequences-indexed by time (discrete stages)-of families of multistage stochastic optimization problems. At each time, the optimization problems in a family are parameterized by some quantities (initial states, constraint levels.. .). In this framework, we introduce an adapted notion of time consistent optimal solutions, that is, solutions that remain optimal after truncation of the past and that are optimal for any values of the parameters. We link this time consistency notion with the concept of state variable in Markov Decision Processes for a class of multistage stochastic optimization problems incorporating state constraints at the final time, either formulated in expectation or in probability. For such problems, when the primitive noise random process is stagewise independent and takes a finite number of values, we show that time consistent solutions can be obtained by considering a finite dimensional state variable. We illustrate our results on a simple dam management problem.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.