Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Constraint-driven multi-task learning (2208.11656v1)

Published 24 Aug 2022 in cs.LG and cs.AI

Abstract: Inductive logic programming is a form of machine learning based on mathematical logic that generates logic programs from given examples and background knowledge. In this project, we extend the Popper ILP system to make use of multi-task learning. We implement the state-of-the-art approach and several new strategies to improve search performance. Furthermore, we introduce constraint preservation, a technique that improves overall performance for all approaches. Constraint preservation allows the system to transfer knowledge between updates on the background knowledge set. Consequently, we reduce the amount of repeated work performed by the system. Additionally, constraint preservation allows us to transition from the current state-of-the-art iterative deepening search approach to a more efficient breadth first search approach. Finally, we experiment with curriculum learning techniques and show their potential benefit to the field.

Citations (1)

Summary

We haven't generated a summary for this paper yet.