Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning logic programs by discovering where not to search (2202.09806v2)

Published 20 Feb 2022 in cs.LG, cs.AI, and cs.LO

Abstract: The goal of inductive logic programming (ILP) is to search for a hypothesis that generalises training examples and background knowledge (BK). To improve performance, we introduce an approach that, before searching for a hypothesis, first discovers where not to search. We use given BK to discover constraints on hypotheses, such as that a number cannot be both even and odd. We use the constraints to bootstrap a constraint-driven ILP system. Our experiments on multiple domains (including program synthesis and game playing) show that our approach can (i) substantially reduce learning times by up to 97%, and (ii) scale to domains with millions of facts.

Summary

We haven't generated a summary for this paper yet.