Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Scalable and Energy Efficient GPU Thread Map for m-Simplex Domains (2208.11617v3)

Published 24 Aug 2022 in cs.DC and cs.DM

Abstract: This work proposes a new GPU thread map for $m$-simplex domains, that scales its speedup with dimension and is energy efficient compared to other state of the art approaches. The main contributions of this work are i) the formulation of the new block-space map $\mathcal{H}: \mathbb{Z}m \mapsto \mathbb{Z}m$ for regular orthogonal simplex domains, which is analyzed in terms of resource usage, and ii) the experimental evaluation in terms of speedup over a bounding box approach and energy efficiency as elements per second per Watt. Results from the analysis show that $\mathcal{H}$ has a potential speedup of up to $2\times$ and $6\times$ for $2$ and $3$-simplices, respectively. Experimental evaluation shows that $\mathcal{H}$ is competitive for $2$-simplices, reaching $1.2\times \sim 2.0\times$ of speedup for different tests, which is on par with the fastest state of the art approaches. For $3$-simplices $\mathcal{H}$ reaches up to $1.3\times \sim 6.0\times$ of speedup making it the fastest of all. The extension of $\mathcal{H}$ to higher dimensional $m$-simplices is feasible and has a potential speedup that scales as $m!$ given a proper selection of parameters $r, \beta$ which are the scaling and replication factors, respectively. In terms of energy consumption, although $\mathcal{H}$ is among the highest in power consumption, it compensates by its short duration, making it one of the most energy efficient approaches. Lastly, further improvements with Tensor and Ray Tracing Cores are analyzed, giving insights to leverage each one of them. The results obtained in this work show that $\mathcal{H}$ is a scalable and energy efficient map that can contribute to the efficiency of GPU applications when they need to process $m$-simplex domains, such as Cellular Automata or PDE simulations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Cristóbal A. Navarro (21 papers)
  2. Felipe A. Quezada (8 papers)
  3. Benjamin Bustos (10 papers)
  4. Nancy Hitschfeld (15 papers)
  5. Rolando Kindelan (3 papers)