Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Block-space GPU Mapping for Embedded Sierpiński Gasket Fractals (1706.04552v1)

Published 14 Jun 2017 in cs.DC

Abstract: This work studies the problem of GPU thread mapping for a Sierpi\'nski gasket fractal embedded in a discrete Euclidean space of $n \times n$. A block-space map $\lambda: \mathbb{Z}{\mathbb{E}}{2} \mapsto \mathbb{Z}{\mathbb{F}}{2}$ is proposed, from Euclidean parallel space $\mathbb{E}$ to embedded fractal space $\mathbb{F}$, that maps in $\mathcal{O}(\log_2 \log_2(n))$ time and uses no more than $\mathcal{O}(n\mathbb{H})$ threads with $\mathbb{H} \approx 1.58...$ being the Hausdorff dimension, making it parallel space efficient. When compared to a bounding-box map, $\lambda(\omega)$ offers a sub-exponential improvement in parallel space and a monotonically increasing speedup once $n > n_0$. Experimental performance tests show that in practice $\lambda(\omega)$ can produce performance improvement at any block-size once $n > n_0 = 28$, reaching approximately $10\times$ of speedup for $n=2{16}$ under optimal block configurations.

Citations (3)

Summary

We haven't generated a summary for this paper yet.