Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 98 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

On a Bernstein inequality for eigenfunctions (2208.10541v2)

Published 22 Aug 2022 in math.AP and math.CA

Abstract: Let $\varphi_{\lambda}$ be an eigenfunction of the Laplace-Beltrami operator on a smooth compact Riemannian manifold $(M,g)$, i.e., $\Delta_g \varphi_{\lambda} + \lambda \varphi_{\lambda}=0$. We show that $\varphi_{\lambda}$ satisfies a local Bernstein inequality, namely for any geodesic ball $B_g(x,r)$ in $M$ there holds: $\sup_{B_g(x,r)}|\nabla\varphi_{\lambda}|\leq C_{\delta}\max\left{\frac{\sqrt{\lambda}\log{2+\delta}\lambda}{r},\lambda\log{2+\delta}\lambda\right}\sup_{B_g(x,r)}|\varphi_{\lambda}|$. We also prove analogous inequalities for solutions of elliptic PDEs in terms of the frequency function.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.