Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Effectiveness of Function Matching in Driving Scene Recognition (2208.09694v1)

Published 20 Aug 2022 in cs.CV and cs.LG

Abstract: Knowledge distillation is an effective approach for training compact recognizers required in autonomous driving. Recent studies on image classification have shown that matching student and teacher on a wide range of data points is critical for improving performance in distillation. This concept (called function matching) is suitable for driving scene recognition, where generally an almost infinite amount of unlabeled data are available. In this study, we experimentally investigate the impact of using such a large amount of unlabeled data for distillation on the performance of student models in structured prediction tasks for autonomous driving. Through extensive experiments, we demonstrate that the performance of the compact student model can be improved dramatically and even match the performance of the large-scale teacher by knowledge distillation with massive unlabeled data.

Citations (1)

Summary

We haven't generated a summary for this paper yet.