Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Instance Distillation for Object Detection in Autonomous Driving (2201.11097v2)

Published 26 Jan 2022 in cs.CV

Abstract: In recent years, knowledge distillation (KD) has been widely used to derive efficient models. Through imitating a large teacher model, a lightweight student model can achieve comparable performance with more efficiency. However, most existing knowledge distillation methods are focused on classification tasks. Only a limited number of studies have applied knowledge distillation to object detection, especially in time-sensitive autonomous driving scenarios. In this paper, we propose Adaptive Instance Distillation (AID) to selectively impart teacher's knowledge to the student to improve the performance of knowledge distillation. Unlike previous KD methods that treat all instances equally, our AID can attentively adjust the distillation weights of instances based on the teacher model's prediction loss. We verified the effectiveness of our AID method through experiments on the KITTI and the COCO traffic datasets. The results show that our method improves the performance of state-of-the-art attention-guided and non-local distillation methods and achieves better distillation results on both single-stage and two-stage detectors. Compared to the baseline, our AID led to an average of 2.7% and 2.1% mAP increases for single-stage and two-stage detectors, respectively. Furthermore, our AID is also shown to be useful for self-distillation to improve the teacher model's performance.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Qizhen Lan (7 papers)
  2. Qing Tian (24 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.