Existence of a percolation threshold on finite transitive graphs (2208.09501v2)
Abstract: Let $(G_n)$ be a sequence of finite connected vertex-transitive graphs with volume tending to infinity. We say that a sequence of parameters $(p_n)$ is a percolation threshold if for every $\varepsilon > 0$, the proportion $\left\lVert K_1 \right\rVert$ of vertices contained in the largest cluster under bond percolation $\mathbb{P}pG$ satisfies both [ \begin{split} \lim{n \to \infty} \mathbb{P}{(1+\varepsilon)p_n}{G_n} \left( \left\lVert K_1 \right\rVert \geq \alpha \right) &= 1 \quad \text{for some $\alpha > 0$, and} \lim{n \to \infty} \mathbb{P}_{(1-\varepsilon)p_n}{G_n} \left( \left\lVert K_1 \right\rVert \geq \alpha \right) &= 0 \quad \text{for all $\alpha > 0$}. \end{split}] We prove that $(G_n)$ has a percolation threshold if and only if $(G_n)$ does not contain a particular infinite collection of pathological subsequences of dense graphs. Our argument uses an adaptation of Vanneuville's new proof of the sharpness of the phase transition for infinite graphs via couplings [Van22] together with our recent work with Hutchcroft on the uniqueness of the giant cluster [EH21].
- Michael Aizenman and David J. Barsky “Sharpness of the phase transition in percolation models” In Comm. Math. Phys. 108.3, 1987, pp. 489–526 URL: http://projecteuclid.org/euclid.cmp/1104116538
- Noga Alon, Itai Benjamini and Alan Stacey “Percolation on finite graphs and isoperimetric inequalities” In Ann. Probab. 32.3A, 2004, pp. 1727–1745 DOI: 10.1214/009117904000000414
- M. Ajtai, J. Komlós and E. Szemerédi “Largest random component of a k𝑘kitalic_k-cube” In Combinatorica 2.1, 1982, pp. 1–7 DOI: 10.1007/BF02579276
- “Sharp threshold for percolation on expanders” In Ann. Probab. 40.1, 2012, pp. 130–145 DOI: 10.1214/10-AOP610
- Itai Benjamini “Coarse geometry and randomness” Lecture notes from the 41st Probability Summer School held in Saint-Flour, 2011, 2100, Lecture Notes in Mathematics Springer, Cham, 2013, pp. viii+129 DOI: 10.1007/978-3-319-02576-6
- “Percolation processes. I. Crystals and mazes” In Proc. Cambridge Philos. Soc. 53, 1957, pp. 629–641 DOI: 10.1017/s0305004100032680
- B. Bollobás, Y. Kohayakawa and T. Łuczak “The evolution of random subgraphs of the cube” In Random Structures Algorithms 3.1, 1992, pp. 55–90 DOI: 10.1002/rsa.3240030106
- Itai Benjamini, Asaf Nachmias and Yuval Peres “Is the critical percolation probability local?” In Probability Theory and Related Fields 149.1, 2011, pp. 261–269 DOI: 10.1007/s00440-009-0251-5
- “Percolation on dense graph sequences” In Ann. Probab. 38.1, 2010, pp. 150–183 DOI: 10.1214/09-AOP478
- “Random subgraphs of finite graphs. I. The scaling window under the triangle condition” In Random Structures Algorithms 27.2, 2005, pp. 137–184 DOI: 10.1002/rsa.20051
- “Random subgraphs of finite graphs. II. The lace expansion and the triangle condition” In Ann. Probab. 33.5, 2005, pp. 1886–1944 DOI: 10.1214/009117905000000260
- “The mean field bound for the order parameter of Bernoulli percolation” In Percolation theory and ergodic theory of infinite particle systems (Minneapolis, Minn., 1984–1985) 8, IMA Vol. Math. Appl. Springer, New York, 1987, pp. 49–71 DOI: 10.1007/978-1-4613-8734-3“˙5
- Hugo Duminil-Copin, Aran Raoufi and Vincent Tassion “Sharp phase transition for the random-cluster and Potts models via decision trees” In Ann. of Math. (2) 189.1, 2019, pp. 75–99 DOI: 10.4007/annals.2019.189.1.2
- “A new proof of the sharpness of the phase transition for Bernoulli percolation and the Ising model” In Comm. Math. Phys. 343.2, 2016, pp. 725–745 DOI: 10.1007/s00220-015-2480-z
- “Supercritical percolation on finite transitive graphs I: Uniqueness of the giant component” arXiv, 2021 DOI: 10.48550/ARXIV.2112.12778
- “On random graphs. I” In Publ. Math. Debrecen 6, 1959, pp. 290–297
- “On the evolution of random graphs” In Magyar Tud. Akad. Mat. Kutató Int. Közl. 5, 1960, pp. 17–61
- Alan Frieze, Michael Krivelevich and Ryan Martin “The emergence of a giant component in random subgraphs of pseudo-random graphs” In Random Structures Algorithms 24.1, 2004, pp. 42–50 DOI: 10.1002/rsa.10100
- Anupam Gupta, Euiwoong Lee and Jason Li “The connectivity threshold for dense graphs” In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA) [Society for IndustrialApplied Mathematics (SIAM)], Philadelphia, PA, 2021, pp. 89–105 DOI: 10.1137/1.9781611976465.7
- “Non-triviality of the phase transition for percolation on finite transitive graphs” arXiv, 2021 DOI: 10.48550/ARXIV.2104.05607
- Tom Hutchcroft “New critical exponent inequalities for percolation and the random cluster model” In Probab. Math. Phys. 1.1, 2020, pp. 147–165 DOI: 10.2140/pmp.2020.1.147
- Tom Hutchcroft “Power-law bounds for critical long-range percolation below the upper-critical dimension” In Probability Theory and Related Fields 181.1, 2021, pp. 533–570 DOI: 10.1007/s00440-021-01043-7
- David R. Karger and Clifford Stein “A new approach to the minimum cut problem” In J. ACM 43.4, 1996, pp. 601–640 DOI: 10.1145/234533.234534
- W. Mader “Minimale n𝑛nitalic_n-fach kantenzusammenhängende Graphen” In Math. Ann. 191, 1971, pp. 21–28 DOI: 10.1007/BF01433466
- M.V. Menshikov “Coincidence of critical points in percolation problems” In Dokl. Akad. Nauk SSSR 288.6, 1986, pp. 1308–1311
- Asaf Nachmias “Mean-field conditions for percolation on finite graphs” In Geom. Funct. Anal. 19.4, 2009, pp. 1171–1194 DOI: 10.1007/s00039-009-0032-4
- Hugo Vanneuville “Sharpness of Bernoulli percolation via couplings” arXiv, 2022 DOI: 10.48550/ARXIV.2201.08223