Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Supercritical percolation on finite transitive graphs I: Uniqueness of the giant component (2112.12778v2)

Published 23 Dec 2021 in math.PR, math-ph, math.CO, and math.MP

Abstract: Let $(G_n){n \geq 1} = ((V_n,E_n)){n \geq 1}$ be a sequence of finite, connected, vertex-transitive graphs with volume tending to infinity. We say that a sequence of parameters $(p_n){n \geq 1}$ in $[0,1]$ is supercritical with respect to Bernoulli bond percolation $\mathbb P_pG$ if there exists $\varepsilon >0$ and $N<\infty$ such that [ \mathbb P{(1-\varepsilon)p_n}{G_n} \left( \text{the largest cluster contains at least $\varepsilon |V_n|$ vertices}\right) \geq \varepsilon ] for every $n\geq N$ with $p_n <1$. We prove that if $(G_n){n \geq 1}$ is sparse, meaning that the degrees are sublinear in the number of vertices, then the supercritical giant cluster is unique with high probability in the sense that if $(p_n){n \geq 1}$ is supercritical then [ \lim_{n\to\infty}\mathbb P_{p_n}{G_n} \left( \text{the second largest cluster contains at least $c|V_n|$ vertices} \right) = 0 ] for every $c>0$. This result is new even under the stronger hypothesis that $(G_n)_{n \geq 1}$ has uniformly bounded vertex degrees, in which case it verifies a conjecture of Benjamini (2001). Previous work of many authors had established the same theorem for complete graphs, tori, hypercubes, and bounded degree expander graphs, each using methods that are highly specific to the examples they treated. We also give a complete solution to the problem of supercritical uniqueness for dense vertex-transitive graphs, establishing a simple necessary and sufficient isoperimetric condition for uniqueness to hold.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. Uniqueness of the infinite cluster and continuity of connectivity functions for short and long range percolation. Comm. Math. Phys., 111(4):505–531, 1987.
  2. Largest random component of a k𝑘kitalic_k-cube. Combinatorica, 2(1):1–7, 1982.
  3. Percolation on finite graphs and isoperimetric inequalities. Ann. Probab., 32(3A):1727–1745, 2004.
  4. N. Alon and J. H. Spencer. The probabilistic method. Wiley Series in Discrete Mathematics and Optimization. John Wiley & Sons, Inc., Hoboken, NJ, fourth edition, 2016.
  5. O. Angel and I. Benjamini. A phase transition for the metric distortion of percolation on the hypercube. Combinatorica, 27(6):645–658, 2007.
  6. I. Benjamini. Percolation on finite graphs. 2001. Unpublished note. Available at https://arxiv.org/abs/math/0106022.
  7. Is the critical percolation probability local? Probab. Theory Related Fields, 149(1-2):261–269, 2011.
  8. I. Benjamini and O. Schramm. Percolation beyond ℤdsuperscriptℤ𝑑\mathbb{Z}^{d}blackboard_Z start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT, many questions and a few answers. Electron. Comm. Probab., 1:no. 8, 71–82, 1996.
  9. B. Bollobás. The evolution of random graphs. Trans. Amer. Math. Soc., 286(1):257–274, 1984.
  10. Percolation on dense graph sequences. Ann. Probab., 38(1):150–183, 2010.
  11. The evolution of random subgraphs of the cube. Random Structures Algorithms, 3(1):55–90, 1992.
  12. The influence of variables in product spaces. Israel J. Math., 77(1-2):55–64, 1992.
  13. R. M. Burton and M. Keane. Density and uniqueness in percolation. Comm. Math. Phys., 121(3):501–505, 1989.
  14. Supercritical percolation on graphs of polynomial growth. arXiv preprint arXiv:2107.06326, 2021.
  15. Existence of phase transition for percolation using the Gaussian free field. Duke Math. J., 169(18):3539–3563, 2020.
  16. P. Erdős and A. Rényi. On the evolution of random graphs. Bull. Inst. Internat. Statist., 38:343–347, 1961.
  17. E. Friedgut. Sharp thresholds of graph properties, and the k𝑘kitalic_k-sat problem. J. Amer. Math. Soc., 12(4):1017–1054, 1999. With an appendix by Jean Bourgain.
  18. E. Friedgut and G. Kalai. Every monotone graph property has a sharp threshold. Proc. Amer. Math. Soc., 124(10):2993–3002, 1996.
  19. G. Grimmett. Percolation, volume 321 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, second edition, 1999.
  20. G. Grimmett. Probability on graphs, volume 8 of Institute of Mathematical Statistics Textbooks. Cambridge University Press, Cambridge, 2018. Random processes on graphs and lattices, Second edition of [ MR2723356].
  21. The supercritical phase of percolation is well behaved. Proc. Roy. Soc. London Ser. A, 430(1879):439–457, 1990.
  22. H. Hatami. A structure theorem for Boolean functions with small total influences. Ann. of Math. (2), 176(1):509–533, 2012.
  23. J. Hermon and T. Hutchcroft. Supercritical percolation on nonamenable graphs: isoperimetry, analyticity, and exponential decay of the cluster size distribution. Invent. Math., 224(2):445–486, 2021.
  24. T. Hutchcroft. Percolation on hyperbolic graphs. Geom. Funct. Anal., 29(3):766–810, 2019.
  25. T. Hutchcroft. Nonuniqueness and mean-field criticality for percolation on nonunimodular transitive graphs. J. Amer. Math. Soc., 33(4):1101–1165, 2020.
  26. T. Hutchcroft. Power-law bounds for critical long-range percolation below the upper-critical dimension. Probab. Theory Related Fields, 181(1-3):533–570, 2021.
  27. T. Hutchcroft and M. Tointon. Non-triviality of the phase transition for percolation on finite transitive graphs. 2021.
  28. R. Lyons and Y. Peres. Probability on trees and networks, volume 42 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, New York, 2016.
  29. R. Lyons and O. Schramm. Indistinguishability of percolation clusters. Ann. Probab., 27(4):1809–1836, 1999.
  30. R. O’Donnell. Analysis of Boolean functions. Cambridge University Press, New York, 2014.
  31. S. Sarkar. A note on the local weak limit of a sequence of expander graphs. Electron. Commun. Probab., 26:Paper No. 32, 6, 2021.
  32. M. Talagrand. On Russo’s approximate zero-one law. Ann. Probab., 22(3):1576–1587, 1994.
  33. P. Tang. Heavy Bernoulli-percolation clusters are indistinguishable. Ann. Probab., 47(6):4077–4115, 2019.
  34. R. van der Hofstad and F. Redig. Maximal clusters in non-critical percolation and related models. J. Stat. Phys., 122(4):671–703, 2006.
  35. Easo, P. Existence of a percolation threshold on finite transitive graphs. (2022)
Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets