Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Hybrid Local-Global Sampling for Fast Informed Sampling-Based Optimal Path Planning (2208.09318v2)

Published 19 Aug 2022 in cs.RO, cs.SY, and eess.SY

Abstract: This paper improves the performance of RRT$*$-like sampling-based path planners by combining admissible informed sampling and local sampling (i.e., sampling the neighborhood of the current solution). An adaptive strategy regulates the trade-off between exploration (admissible informed sampling) and exploitation (local sampling) based on online rewards from previous samples. The paper demonstrates that the algorithm is asymptotically optimal and has a better convergence rate than state-of-the-art path planners (e.g., Informed-RRT*) in several simulated and real-world scenarios. An open-source, ROS-compatible implementation of the algorithm is publicly available.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic determination of minimum cost paths,” IEEE Transactions on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.
  2. M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun, “Anytime search in dynamic graphs,” Artificial Intelligence, vol. 172, no. 14, pp. 1613–1643, 2008.
  3. S. LaValle, “Rapidly-exploring random trees : a new tool for path planning,” The annual research report, 1998.
  4. D. Hsu, J.-C. Latombe, and R. Motwani, “Path planning in expansive configuration spaces,” in Proceedings of International Conference on Robotics and Automation, vol. 3, 1997, pp. 2719–2726.
  5. L. E. Kavraki, P. Svestka, J. . Latombe, and M. H. Overmars, “Probabilistic roadmaps for path planning in high-dimensional configuration spaces,” IEEE Transactions on Robotics and Automation, vol. 12, no. 4, pp. 566–580, 1996.
  6. S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion planning,” The International Journal of Robotics Research, vol. 30, no. 7, pp. 846–894, 2011.
  7. J. D. Gammell, T. D. Barfoot, and S. S. Srinivasa, “Informed sampling for asymptotically optimal path planning,” IEEE Transactions on Robotics, vol. 34, no. 4, pp. 966–984, 2018.
  8. “MI-RRT∗: a ROS-MoveIt! plugin,” https://github.com/JRL-CARI-CNR-UNIBS/cari_motion_planning.
  9. C. Urmson and R. Simmons, “Approaches for heuristically biasing RRT growth,” in Proceedings of the IEEE International Conference on Intelligent Robots and Systems, 2003, pp. 1178–1183.
  10. S. Rodriguez, S. Thomas, R. Pearce, and N. M. Amato, “Resampl: A region-sensitive adaptive motion planner,” in Algorithmic Foundation of Robotics VII, 2008, pp. 285–300.
  11. O. Salzman and D. Halperin, “Asymptotically near-optimal RRT for fast, high-quality, motion planning,” IEEE Transactions on Robotics, vol. 32, no. 3, pp. 473–483, 2013.
  12. Y. X. Shan, B. J. Li, Jian-Zhou, and Yue-Zhang, “An approach to speed up RRT,” in Proceedings of the IEEE Intelligent Vehicles Symposium, 2014, pp. 594–598.
  13. J. Ge, F. Sun, and C. Liu, “RRT-GD: An efficient rapidly-exploring random tree approach with goal directionality for redundant manipulator path planning,” in Proceedings of the IEEE International Conference on Robotics and Biomimetics, 2016, pp. 1983–1988.
  14. A. D. Santana Correia, E. O. Freire, S. Kamarry, É. Á. N. Carvalho, and L. Molina, “The polarized RRT-edge approach,” in Proceedings of the Latin American Robotics Symposium, 2018, pp. 277–282.
  15. H. Yu, W. Lu, D. Liu, Y. Han, and Q. Wu, “Speeding up gaussian belief space planning for underwater robots through a covariance upper bound,” IEEE Access, vol. 7, pp. 121 961–121 974, 2019.
  16. T. Lai, P. Morere, F. Ramos, and G. Francis, “Bayesian local sampling-based planning,” IEEE Robotics and Automation Letters, 2020.
  17. M. Faroni and D. Berenson, “Motion planning as online learning: A multi-armed bandit approach to kinodynamic sampling-based planning,” IEEE Robotics and Automation Letters, vol. 8, no. 10, pp. 6651–6658, 2023.
  18. M.-C. Kim and J.-B. Song, “Informed RRT* towards optimality by reducing size of hyperellipsoid,” in Proceedings of the IEEE International Conference on Advanced Intelligent Mechatronics, 2015, pp. 244–248.
  19. ——, “Informed RRT* with improved converging rate by adopting wrapping procedure,” Intelligent Service Robotics, vol. 11, pp. 53––60, 2018.
  20. F. Hauer and P. Tsiotras, “Deformable rapidly-exploring random trees.” in Robotics: Science and Systems, 2017.
  21. S. Choudhury, J. D. Gammell, T. D. Barfoot, S. S. Srinivasa, and S. Scherer, “Regionally accelerated batch informed trees (RABIT*): A framework to integrate local information into optimal path planning,” in Proceedings of the IEEE International Conference on Robotics and Automation, 2016, pp. 4207–4214.
  22. J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Batch Informed Trees (BIT*): Sampling-based optimal planning via the heuristically guided search of implicit random geometric graphs,” in Proceedings of the IEEE International Conference on Robotics and Automation, 2015, pp. 3067–3074.
  23. N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “Chomp: Gradient optimization techniques for efficient motion planning,” in Proceddings of the IEEE International Conference on Robotics and Automation, 2009, pp. 489–494.
  24. M. P. Strub and J. D. Gammell, “Adaptively informed trees (AIT*): Fast asymptotically optimal path planning through adaptive heuristics,” in Proceedings of the IEEE International Conference on Robotics and Automation, 2020, pp. 3191–3198.
  25. ——, “Advanced BIT* (ABIT*)- sampling-based planning with advanced graph-search techniques,” in Proceedings of the IEEE International Conference on Robotics and Automation, 2020, pp. 130–136.
  26. S. S. Joshi and P. Tsiotras, “Relevant region exploration on general cost-maps for sampling-based motion planning,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2020, pp. 6689–6695.
  27. A. Mandalika, R. Scalise, B. Hou, S. Choudhury, and S. S. Srinivasa, “Guided incremental local densification for accelerated sampling-based motion planning,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2021.
  28. L. Janson, E. Schmerling, A. Clark, and M. Pavone, “Fast marching tree: A fast marching sampling-based method for optimal motion planning in many dimensions,” The International journal of robotics research, vol. 34, no. 7, pp. 883–921, 2015.
  29. “Robotic cell description for benchmarking of motion planners in MoveIt!” https://github.com/JRL-CARI-CNR-UNIBS/high_dof_snake_robots.
  30. D. Coleman, I. A. \textcommabelowSucan, S. Chitta, and N. Correll, “Reducing the barrier to entry of complex robotic software: a MoveIt! case study,” Journal of Software Engineering for Robotics, vol. 5, no. 1, pp. 3–16, 2014.
Citations (1)

Summary

We haven't generated a summary for this paper yet.