Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Stable Klingen Vectors and Paramodular Newforms (2208.08939v1)

Published 18 Aug 2022 in math.NT and math.RT

Abstract: We introduce the family of stable Klingen congruence subgroups of GSp(4). We use these subgroups to study both local paramodular vectors and Siegel modular forms of degree $2$ with paramodular level. In the first part, when $F$ is a nonarchimedean local field of characteristic zero and $(\pi,V)$ is an irreducible, admissible representation of GSp(4,F) with trivial central character, we establish a basic connection between the subspaces $V_s(n)$ of $V$ fixed by the stable Klingen congruence subgroups and the spaces of paramodular vectors in $V$ and derive a fundamental partition of the set of paramodular representations into two classes. We determine the spaces $V_s(n)$ for all $(\pi,V)$ and $n$. We relate the stable Klingen vectors in $V$ to the two paramodular Hecke eigenvalues of $\pi$ by introducing two stable Klingen Hecke operators and one level lowering operator. In contrast to the paramodular case, these three new operators are given by simple upper block formulas. We prove further results about stable Klingen vectors in $V$ especially when $\pi$ is generic. In the second part we apply these local results to a Siegel modular newform $F$ of degree $2$ with paramodular level $N$ that is an eigenform of the two paramodular Hecke operators at all primes $p$. We present new formulas relating the Hecke eigenvalues of $F$ at $p$ to the Fourier coefficients $a(S)$ of $F$ for $p2 \mid N$. We verify that these formulas hold for a large family of examples and indicate how to use our formulas to generally compute Hecke eigenvalues at $p$ from Fourier coefficients of $F$ for $p2 \mid N$. Finally, for $p2 \mid N$ we express the formal power series in $p{-s}$ with coefficients given by the radial Fourier coefficients $a(pt S)$, $t\geq 0$, as an explicit rational function in $p{-s}$ with denominator $L_p(s,F){-1}$, where $L_p(s,F)$ is the spin $L$-factor of $F$ at $p$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.