Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CSGO: Constrained-Softassign Gradient Optimization For Large Graph Matching (2208.08233v4)

Published 17 Aug 2022 in math.CO and cs.LG

Abstract: Graph matching aims to find correspondences between two graphs. This paper integrates several well-known graph matching algorithms into a framework: the constrained gradient method. The primary difference among these algorithms lies in tuning a step size parameter and constraining operators. By leveraging these insights, we propose an adaptive step size parameter to guarantee the underlying algorithms' convergence, simultaneously enhancing their efficiency and robustness. For the constraining operator, we introduce a scalable softassign for large graph matching problems. Compared to the original softassign, our approach offers increased speed, improved robustness, and reduced risk of overflow. The advanced constraining operator enables a CSGO for large graph matching, which outperforms state-of-the-art methods in experiments. Notably, in attributed graph matching tasks, CSGO achieves an over 10X increase in speed compared to current constrained gradient algorithms.

Citations (3)

Summary

We haven't generated a summary for this paper yet.